Function Differences with torch.nn.utils.clip_grad_value_

View Source On Gitee

torch.nn.utils.clip_grad_value_

torch.nn.utils.clip_grad_value_(parameters, clip_value)

For more information, see torch.nn.utils.clip_grad_value_.

mindspore.ops.clip_by_value

mindspore.ops.clip_by_value(x, clip_value_min=None, clip_value_max=None)

For more information, see mindspore.ops.clip_by_value.

Differences

The gradient in PyTorch is a property of the Tensor and can be made to have a gradient by setting requires_grad=True. Due to the difference of framework mechanism, the gradient and weight are Tensor independent of each other in MindSpore. Therefore, when gradient cropping, MindSpore needs to obtain the gradient Tensor before cropping.

PyTorch: Gradient cropping can be implemented by directly passing in a Tensor with a gradient.

MindSpore: Due to the different framework mechanism, to implement gradient cropping, it is necessary to obtain the gradient first and then cropping the gradient. You can use methods such as mindspore.grad to obtain the gradient. For details, please refer to gradient derivation.

Categories

Subcategories

PyTorch

MindSpore

Differences

Parameters

Parameter 1

parameters

x

The gradient mechanism is different. PyTorch can crop the gradient by passing in the Tensor, while MindSpore needs to pass in the gradient Tensor. Please refer to gradient derivation for how to obtain the gradient.

Parameter 2

clip_value

clip_value_min

PyTorch cropping range is [-clip_value, clip_value], while MindSpore cropping range is [clip_value_min, clip_value_max]

Parameter 3

-

clip_value_max

PyTorch cropping range is [-clip_value, clip_value], while MindSpore cropping range is [clip_value_min, clip_value_max]

Code Example

Due to the different mechanism, MindSpore needs to implement gradient cropping first using mindspore.grad and other method to obtain the gradient, (For more methods to obtain the gradient, please refer to gradient derivation), and then crop the gradient. The example code is as follows.

import numpy as np
import torch
import mindspore as ms
from mindspore.common.initializer import initializer, Zero

data = np.array([0.2, 0.5, 0.2], dtype=np.float32)
label = np.array([1, 0], dtype=np.float32)
label_pt = np.array([0], dtype=np.float32)

# PyTorch
class Net1(torch.nn.Module):
    def __init__(self):
        super(Net1, self).__init__()
        self.dense = torch.nn.Linear(3, 2)
        self.apply(self._init_weights)

    def _init_weights(self, module):
        if isinstance(module, torch.nn.Linear):
            module.weight.data.zero_()
            module.bias.data.zero_()

    def forward(self, x):
        x = self.dense(x)
        return x

net1 = Net1()
loss_fun = torch.nn.CrossEntropyLoss()
out = net1(torch.tensor(data))
out = torch.unsqueeze(out, 0)
loss = loss_fun(out, torch.tensor(label_pt, dtype=torch.long))
loss.backward()
grads = [p.grad for p in net1.parameters() if p.grad is not None]
print(grads)
# Before clip out:
# [tensor([[-0.1000, -0.2500, -0.1000],
#         [ 0.1000,  0.2500,  0.1000]]), tensor([-0.5000,  0.5000])]
torch.nn.utils.clip_grad_value_(net1.parameters(), clip_value=0.1)
print(grads)
# After clip out:
# [tensor([[-0.1000, -0.1000, -0.1000],
#         [ 0.1000,  0.1000,  0.1000]]), tensor([-0.1000,  0.1000])]

# MindSpore
class Net2(ms.nn.Cell):
    def __init__(self):
        super(Net2, self).__init__()
        self.dense = ms.nn.Dense(3, 2)
        self.apply(self._init_weights)

    def _init_weights(self, cell):
        if isinstance(cell, ms.nn.Dense):
            cell.weight.set_data(initializer(Zero(), cell.weight.shape, cell.weight.dtype))
            cell.bias.set_data(initializer(Zero(), cell.bias.shape, cell.bias.dtype))

    def construct(self, x):
        return self.dense(x)

net2 = Net2()
loss_fn = ms.nn.CrossEntropyLoss()

def forward_fn(data, label):
    logits = ms.ops.squeeze(net2(data))
    loss = loss_fn(logits, label)
    return loss, logits

grad_fn = ms.grad(forward_fn, grad_position=None, weights=net2.trainable_params(), has_aux=True)
grads = grad_fn(ms.ops.unsqueeze(ms.Tensor(data), dim=0), ms.Tensor(label))
print(grads)
# Before clip out:
# ((Tensor(shape=[2, 3], dtype=Float32, value=
# [[-1.00000001e-01, -2.50000000e-01, -1.00000001e-01],
#  [ 1.00000001e-01,  2.50000000e-01,  1.00000001e-01]]), Tensor(shape=[2], dtype=Float32, value= [-5.00000000e-01,  5.00000000e-01])), (Tensor(shape=[2], dtype=Float32, value= [ 0.00000000e+00,  0.00000000e+00]),))
grads = ms.ops.clip_by_value(grads, clip_value_min=-0.1, clip_value_max=0.1)
print(grads)
# After clip out:
# ((Tensor(shape=[2, 3], dtype=Float32, value=
# [[-1.00000001e-01, -1.00000001e-01, -1.00000001e-01],
#  [ 1.00000001e-01,  1.00000001e-01,  1.00000001e-01]]), Tensor(shape=[2], dtype=Float32, value= [-1.00000001e-01,  1.00000001e-01])), (Tensor(shape=[2], dtype=Float32, value= [ 0.00000000e+00,  0.00000000e+00]),))