Function Differences with torch.nn.SequentialCell
torch.nn.Sequential
torch.nn.Sequential(
*args
)
For more information, see torch.nn.Sequential.
mindspore.nn.SequentialCell
mindspore.nn.SequentialCell(
*args
)
For more information, see mindspore.nn.SequentialCell.
Differences
PyTorch: Construct the Cell order container. Sequential adds the Cells in the order of the incoming List. In addition, OrderedDict is also supported as a constructor.
MindSpore: Construct the Cell order container. The input types are the same as PyTorch. In contrast to PyTorch, MindSpore supports append(), which adds the Cell at the end of the container.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameter |
Parameter 1 |
args |
args |
Parameters of the incoming container, supporting List and OrderedDict types. |
Code Example
import collections
# In MindSpore
import mindspore as ms
model = ms.nn.SequentialCell(
ms.nn.Conv2d(1,20,5),
ms.nn.ReLU(),
ms.nn.Conv2d(20,64,5),
ms.nn.ReLU()
)
print(model)
# Out:
# SequentialCell<
# (0): Conv2d<input_channels=1, output_channels=20, kernel_size=(5, 5), stride=(1, 1), pad_mode=same, padding=0, dilation=(1, 1), group=1, has_bias=False, weight_init=normal, bias_init=zeros, format=NCHW>
# (1): ReLU<>
# (2): Conv2d<input_channels=20, output_channels=64, kernel_size=(5, 5), stride=(1, 1), pad_mode=same, padding=0, dilation=(1, 1), group=1, has_bias=False, weight_init=normal, bias_init=zeros, format=NCHW>
# (3): ReLU<>
# >
# Example of using Sequential with OrderedDict
model = ms.nn.SequentialCell(collections.OrderedDict([
('conv1', ms.nn.Conv2d(1,20,5)),
('relu1', ms.nn.ReLU()),
('conv2', ms.nn.Conv2d(20,64,5)),
('relu2', ms.nn.ReLU())
]))
print(model)
# Out:
# SequentialCell<
# (conv1): Conv2d<input_channels=1, output_channels=20, kernel_size=(5, 5), stride=(1, 1), pad_mode=same, padding=0, dilation=(1, 1), group=1, has_bias=False, weight_init=normal, bias_init=zeros, format=NCHW>
# (relu1): ReLU<>
# (conv2): Conv2d<input_channels=20, output_channels=64, kernel_size=(5, 5), stride=(1, 1), pad_mode=same, padding=0, dilation=(1, 1), group=1, has_bias=False, weight_init=normal, bias_init=zeros, format=NCHW>
# (relu2): ReLU<>
# >
# In PyTorch
import torch
model = torch.nn.Sequential(
torch.nn.Conv2d(1,20,5),
torch.nn.ReLU(),
torch.nn.Conv2d(20,64,5),
torch.nn.ReLU()
)
print(model)
# Out
# Sequential(
# (0): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
# (1): ReLU()
# (2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))
# (3): ReLU()
# )
# Example of using Sequential with OrderedDict
model = torch.nn.Sequential(collections.OrderedDict([
('conv1', torch.nn.Conv2d(1,20,5)),
('relu1', torch.nn.ReLU()),
('conv2', torch.nn.Conv2d(20,64,5)),
('relu2', torch.nn.ReLU())
]))
print(model)
# Out:
# Sequential(
# (conv1): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
# (relu1): ReLU()
# (conv2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))
# (relu2): ReLU()
# )