Function Differences with torch.nn.NLLLoss
torch.nn.NLLLoss
torch.nn.NLLLoss(
weight=None,
size_average=None,
ignore_index=-100,
reduce=None,
reduction='mean'
)(input, target)
For more information, see torch.nn.NLLLoss.
mindspore.nn.NLLLoss
class mindspore.nn.NLLLoss(
weight=None,
ignore_index=-100,
reduction='mean'
)(logits, labels)
For more information, see mindspore.nn.NLLLoss.
Differences
PyTorch: Calculate the negative log-likelihood loss between the predicted and target values.
MindSpore: There are no functional differences except for two parameters that have been deprecated in PyTorch.
Categories |
Subcategories |
PyTorch |
MindSpore |
Differences |
---|---|---|---|---|
Parameters |
Parameter 1 |
weight |
weight |
Specify the weight of each category |
Parameter 2 |
size_average |
- |
Deprecated, replaced by reduction. MindSpore does not have this parameter |
|
Parameter 3 |
ignore_index |
ignore_index |
Specify the values to be ignored in the labels (generally padding values) so that they do not have an effect on the gradient |
|
Parameter 4 |
reduce |
- |
Deprecated, replaced by reduction. MindSpore does not have this parameter |
|
Parameter 5 |
reduction |
reduction |
Specify the calculation method to be applied to the output results |
|
Inputs |
Input 1 |
input |
logits |
The functions are the same, but the parameter names are different |
Input 2 |
target |
labels |
The functions are the same, but the parameter names are different |
Code Example
import numpy as np
data = np.random.randn(2, 2, 3, 3)
# In MindSpore
import mindspore as ms
loss = ms.nn.NLLLoss(ignore_index=-110, reduction="none")
input = ms.Tensor(data, dtype=ms.float32)
target = ms.ops.zeros((2, 3, 3), dtype=ms.int32)
output = loss(input, target)
print(output)
# Out:
# [[[ 0.7047795 0.8196785 -0.7913506 ]
# [ 0.22157642 -0.18818447 -0.65975004]
# [ 1.7223285 -0.9269855 0.46461168]]
# [[ 0.21305805 -2.213903 0.36110482]
# [-0.1900587 -0.56938815 0.12274747]
# [ 1.149195 -0.8739661 -1.7944012 ]]]
# In PyTorch
import torch
loss = torch.nn.NLLLoss(ignore_index=-110, reduction="none")
input = torch.tensor(data, dtype=torch.float32)
target = torch.zeros((2, 3, 3), dtype=torch.long)
output = loss(input, target)
print(output)
# Out:
# tensor([[[ 0.7048, 0.8197, -0.7914],
# [ 0.2216, -0.1882, -0.6598],
# [ 1.7223, -0.9270, 0.4646]],
# [[ 0.2131, -2.2139, 0.3611],
# [-0.1901, -0.5694, 0.1227],
# [ 1.1492, -0.8740, -1.7944]]])