# Function Differences with torch.nn.LocalResponseNorm
torch.nn.LocalResponseNorm
class torch.nn.LocalResponseNorm(
size,
alpha=0.0001,
beta=0.75,
k=1.0
)(input) -> Tensor
For more information, see torch.nn.LocalResponseNorm.
mindspore.ops.LRN
class mindspore.ops.LRN(
depth_radius=5,
bias=1.0,
alpha=1.0,
beta=0.5,
norm_region="ACROSS_CHANNELS"
)(x) -> Tensor
For more information, see mindspore.ops.LRN.
Differences
PyTorch: This API performs Local Response Normalization (LRN) operation that normalizes the input for each neuron in a specific way to improve the generalization ability of deep neural networks. It returns a tensor with the same type as the input.
MindSpore: It implements the same functionality as PyTorch, but with different parameter names. The depth_radius
parameter in MindSpore performs the same function as the size
parameter in PyTorch, and there is a mapping relationship of twice the value: size=2*depth_radius. Currently, mindspore.ops.LRN and tf.raw_ops.LRN can be completely aligned, and both can achieve the same accuracy. However, if compared with torch.nn.LocalResponseNorm, there may be a precision difference of 1e-3.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameters |
Parameters 1 |
size |
depth_radius |
The number of adjacent neurons to consider for normalization,mapping relationship: size=2*depth_radius |
Parameter 2 |
k |
bias |
Same function, different parameter names |
|
Parameter 3 |
alpha |
alpha |
- |
|
Parameter 4 |
beta |
beta |
- |
|
Parameter 5 |
- |
norm_region |
Specify the norm region, PyTorch doesn’t have this parameter |
|
Input |
Single input |
input |
x |
Same function, different parameter names |
Code Example 1
The
depth_radius
in MindSpore corresponds tosize
in PyTorch with its value halved, it is necessary to setdepth_radius
as half ofsize
to achieve the same function.
# PyTorch
import torch
import numpy as np
input_x = torch.from_numpy(np.array([[[[2.4], [3.51]],[[1.3], [-4.4]]]], dtype=np.float32))
output = torch.nn.LocalResponseNorm(size=2, alpha=0.0001, beta=0.75, k=1.0)(input_x)
print(output.numpy())
#[[[[ 2.3994818]
# [ 3.5083795]]
# [[ 1.2996368]
# [-4.39478 ]]]]
# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.ops.operations as ops
import numpy as np
input_x = Tensor(np.array([[[[2.4], [3.51]],[[1.3], [-4.4]]]]), mindspore.float32)
lrn = ops.LRN(depth_radius=1, bias=1.0, alpha=0.0001, beta=0.75)
output = lrn(input_x)
print(output)
#[[[[ 2.39866 ]
# [ 3.5016835]]
# [[ 1.2992741]
# [-4.3895745]]]]