Function Differences with torch.nn.L1Loss
torch.nn.L1Loss
torch.nn.L1Loss(size_average=None, reduce=None, reduction='mean')(input, target) -> Tensor
For more information, see torch.nn.L1Loss.
mindspore.nn.L1Loss
mindspore.nn.L1Loss(reduction='mean')(logits, labels) -> Tensor
For more information, see mindspore.nn.L1Loss.
Differences
PyTorch: L1Loss is used to calculate the average absolute error between the predicted and target values.
MindSpore: Includes PyTorch function, which can still run when logits and labels have different shapes but can broadcast to each other, while PyTorch cannot.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameters |
Parameter 1 |
size_average |
- |
Deprecated, function taken over by reduction |
Parameter 2 |
reduce |
- |
Deprecated, function taken over by reduction |
|
Parameter 3 |
reduction |
reduction |
- |
|
Input |
Input 1 |
input |
logits |
Same function, different parameter names |
Input 2 |
target |
labels |
Same function, different parameter names |
Code Example
The two APIs achieve the same function and have the same usage.
# PyTorch
import torch
import torch.nn as nn
loss = nn.L1Loss()
input = torch.tensor([2, 2, 3], dtype=torch.float32)
target = torch.tensor([1, 2, 2], dtype=torch.float32)
output = loss(input, target)
output = output.detach().numpy()
print(output)
# 0.6666667
# MindSpore
import mindspore
from mindspore import Tensor, nn
import numpy as np
loss = nn.L1Loss()
logits = Tensor(np.array([2, 2, 3]), mindspore.float32)
labels = Tensor(np.array([1, 2, 2]), mindspore.float32)
output = loss(logits, labels)
print(output)
# 0.6666667