Function Differences with torch.nn.GaussianNLLLoss
torch.nn.GaussianNLLLoss
class torch.nn.GaussianNLLLoss(
*,
full=False,
eps=1e-06,
reduction='mean'
)(input, target, var) -> Tensor/Scalar
For more information, see torch.nn.GaussianNLLLoss.
mindspore.nn.GaussianNLLLoss
class mindspore.nn.GaussianNLLLoss(
*,
full=False,
eps=1e-06,
reduction='mean'
)(logits, labels, var) -> Tensor/Scalar
For more information, see mindspore.nn.GaussianNLLLoss.
Differences
PyTorch: Obey the negative log-likelihood loss of the Gaussian distribution.
MindSpore: Implements the same function as PyTorch. If there is a number less than 0 in var, PyTorch will report an error directly, while MindSpore will calculate max(var, eps) and then pass the result to log for calculation.
Categories |
Subcategories |
PyTorch |
MindSpore |
Differences |
---|---|---|---|---|
Parameters |
Parameter 1 |
full |
full |
Same function |
Parameter 2 |
eps |
eps |
Same function |
|
Parameter 3 |
reduction |
reduction |
Same function |
|
Inputs |
Input 1 |
input |
logits |
Same function, different parameter names |
Input 2 |
target |
labels |
Same function, different parameter names |
|
Input 3 |
var |
var |
Same function |
Code Example
The two APIs implement basically the same functionality and usage, but PyTorch and MindSpore handle the case of input
var<0
differently.
# PyTorch
import torch
from torch import nn
import numpy as np
arr1 = np.arange(8).reshape((4, 2))
arr2 = np.array([2, 3, 1, 4, 6, 4, 4, 9]).reshape((4, 2))
logits = torch.tensor(arr1, dtype=torch.float32)
labels = torch.tensor(arr2, dtype=torch.float32)
loss = nn.GaussianNLLLoss(reduction='mean')
var = torch.tensor(np.ones((4, 1)), dtype=torch.float32)
output = loss(logits, labels, var)
# tensor(1.4375)
# If there are elements in the var that are less than 0, PyTorch will directly report an error
var[0] = -1
output2 = loss(logits, labels, var)
# ValueError: var has negative entry/entries
# MindSpore
import numpy as np
from mindspore import Tensor
import mindspore.nn as nn
from mindspore import dtype as mstype
arr1 = np.arange(8).reshape((4, 2))
arr2 = np.array([2, 3, 1, 4, 6, 4, 4, 9]).reshape((4, 2))
logits = Tensor(arr1, mstype.float32)
labels = Tensor(arr2, mstype.float32)
loss = nn.GaussianNLLLoss(reduction='mean')
var = Tensor(np.ones((4, 1)), mstype.float32)
output = loss(logits, labels, var)
print(output)
# 1.4374993
# If there are elements that are less than 0 in var, MindSpore will use the result of max(var, eps)
var[0] = -1
output2 = loss(logits, labels, var)
print(output2)
# 499999.22