Comparing the function difference with torch.optim.lr_scheduler.ExponentialLR
torch.optim.lr_scheduler.ExponentialLR
torch.optim.lr_scheduler.ExponentialLR(
optimizer,
gamma,
last_epoch=-1,
verbose=False
)
For more information, see torch.optim.lr_scheduler.ExponentialLR.
mindspore.nn.exponential_decay_lr
mindspore.nn.exponential_decay_lr(
learning_rate,
decay_rate,
total_step,
step_per_epoch,
decay_epoch,
is_stair=False
)
For more information, see mindspore.nn.exponential_decay_lr.
mindspore.nn.ExponentialDecayLR
mindspore.nn.ExponentialDecayLR(
learning_rate,
decay_rate,
decay_steps,
is_stair=False
)
For more information, see mindspore.nn.ExponentialDecayLR.
Differences
PyTorch (torch.optim.lr_scheduler.ExponentialLR): The calculating method is step
method. When verbose
is True, the relevant information is printed for each update.
MindSpore (mindspore.nn.exponential_decay_lr): The calculating method is exponential_decay_lr
pre-generates the learning rate list and passes the list into the optimizer.
Categories |
Subcategories |
PyTorch |
MindSpore |
Differences |
---|---|---|---|---|
Parameter |
Parameter 1 |
optimizer |
Optimizer for PyTorch applications. MindSpore does not have this Parameter |
|
Parameter 2 |
gamma |
decay_rate |
Parameter of decay learning rate, same function, different Parameter name |
|
Parameter 3 |
last_epoch |
MindSpore does not have this Parameter |
||
Parameter 4 |
verbose |
PyTorch |
||
Parameter 5 |
learning_rate |
MindSpore sets the initial value of the learning rate. |
||
Parameter 6 |
total_step |
Total number of steps in MindSpore |
||
Parameter 7 |
step_per_epoch |
The number of steps per epoch in MindSpore |
||
Parameter 8 |
decay_steps |
The number of decay steps performed by MindSpore |
||
Parameter 9 |
is_stair |
When MindSpore |
MindSpore (mindspore.nn.ExponentialDecayLR): The calculating method is ExponentialDecayLR
is passed in the optimizer for training in the way of the computational graph.
Categories |
Subcategories |
PyTorch |
MindSpore |
Differences |
---|---|---|---|---|
Parameter |
Parameter 1 |
optimizer |
Optimizer for PyTorch applications. MindSpore does not have this Parameter |
|
Parameter 2 |
gamma |
decay_rate |
Parameter of decay learning rate, same function, different Parameter name |
|
Parameter 3 |
last_epoch |
MindSpore does not have this Parameter. |
||
Parameter 4 |
verbose |
PyTorch |
||
Parameter 5 |
learning_rate |
MindSpore sets the initial value of the learning rate. |
||
Parameter 6 |
decay_steps |
The number of decay steps performed by MindSpore |
||
Parameter 7 |
is_stair |
When MindSpore |
Code Example
# In MindSpore:
import mindspore as ms
from mindspore import nn
# In MindSpore:exponential_decay_lr
learning_rate = 0.1
decay_rate = 0.9
total_step = 6
step_per_epoch = 2
decay_epoch = 1
output = nn.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch)
print(output)
# out
# [0.1, 0.1, 0.09000000000000001, 0.09000000000000001, 0.08100000000000002, 0.08100000000000002]
# In MindSpore:ExponentialDecayLR
learning_rate = 0.1
decay_rate = 0.9
decay_steps = 4
global_step = ms.Tensor(2, ms.int32)
exponential_decay_lr = nn.ExponentialDecayLR(learning_rate, decay_rate, decay_steps)
result = exponential_decay_lr(global_step)
print(result)
# out
# 0.094868325
# In torch:
import torch
import numpy as np
from torch import optim
model = torch.nn.Sequential(torch.nn.Linear(20, 1))
optimizer = optim.SGD(model.parameters(), 0.1)
exponential_decay_lr = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
myloss = torch.nn.MSELoss()
dataset = [(torch.tensor(np.random.rand(1, 20).astype(np.float32)), torch.tensor([1.]))]
for epoch in range(5):
for input, target in dataset:
optimizer.zero_grad()
output = model(input)
loss = myloss(output.view(-1), target)
loss.backward()
optimizer.step()
exponential_decay_lr.step()
print(exponential_decay_lr.get_last_lr())
# out
# [0.09000000000000001]
# [0.08100000000000002]
# [0.07290000000000002]
# [0.06561000000000002]
# [0.05904900000000002]