Function Differences with torch.Bilinear
torch.nn.Bilinear
torch.nn.Bilinear(
in1_features,
in2_features,
out_features,
bias=True)(input1, input2) -> Tensor
For more information, see torch.nn.Bilinear.
mindspore.nn.BiDense
mindspore.nn.BiDense(
in1_channels,
in2_channels,
out_channels,
weight_init=None,
bias_init=None,
has_bias=True)(input1, input2) -> Tensor
For more information, see mindspore.nn.BiDense.
Differences
PyTorch: Bilinear fully connected layer.
MindSpore: MindSpore API basically implements the same function as PyTorch. The initialization methods for weights and biases can be set via weight_init
and bias_init
respectively, which is not available for PyTorch.
Categories |
Subcategories |
PyTorch |
MindSpore |
Differences |
---|---|---|---|---|
Parameters |
Parameter 1 |
in1_features |
in1_channels |
Same function, different parameter names |
Parameter 2 |
in2_features |
in2_channels |
Same function, different parameter names |
|
Parameter 3 |
out_features |
out_channels |
Same function, different parameter names |
|
Parameter 4 |
- |
weight_init |
Initialization method for the weight parameter, which is not available for PyTorch |
|
Parameter 5 |
- |
bias_init |
Initialization method for the bias parameter, which is not available for PyTorch |
|
Parameter 6 |
bias |
has_bias |
Same function, different parameter names |
|
Inputs |
Input 1 |
input1 |
input1 |
Same function |
Input 2 |
input2 |
input2 |
Same function |
Code Example
# PyTorch
import torch
m = torch.nn.Bilinear(20, 30, 40)
input1 = torch.randn(128, 20)
input2 = torch.randn(128, 30)
output = m(input1, input2)
print(output.shape)
# torch.Size([128, 40])
# MindSpore
import mindspore
m = mindspore.nn.BiDense(20, 30, 40)
input1 = mindspore.ops.randn(128, 20)
input2 = mindspore.ops.randn(128, 30)
output = m(input1, input2)
print(output.shape)
# (128, 40)