Function Differences with torch.nn.BatchNorm1d

View Source On Gitee

torch.nn.BatchNorm1d

class torch.nn.BatchNorm1d(
    num_features,
    eps=1e-05,
    momentum=0.1,
    affine=True,
    track_running_stats=True
)(input) -> Tensor

For more information, see torch.nn.BatchNorm1d.

mindspore.nn.BatchNorm1d

class mindspore.nn.BatchNorm1d(
    num_features,
    eps=1e-5,
    momentum=0.9,
    affine=True,
    gamma_init='ones',
    beta_init='zeros',
    moving_mean_init='zeros',
    moving_var_init='ones',
    use_batch_statistics=None,
    data_format='NCHW'
)(x) -> Tensor

For more information, see mindspore.nn.BatchNorm1d.

Differences

PyTorch:Batch normalization of the input 2D or 3D data.

MindSpore:The implementation function of the API in MindSpore is basically the same as that of PyTorch. The default value of the momentum parameter in MindSpore is 0.9, and the momentum conversion relationship with PyTorch is 1-momentum. The behavior of the default value is the same as that of PyTorch. The parameter update strategy during training and inference is different from that of PyTorch. For details, please refer to Differences Between MindSpore and PyTorch - nn.BatchNorm2d.

Categories

Subcategories

PyTorch

MindSpore

Differences

Parameters

Parameter 1

num_features

num_features

-

Parameter 2

eps

eps

-

Parameter 3

momentum

momentum

The function is the same, but the default value in PyTorch is 0.1, and in MindSpore is 0.9. The conversion relationship with PyTorch’s momentum is 1-momentum, and the default value behavior is the same as PyTorch

Parameter 4

affine

affine

-

Parameter 5

track_running_stats

use_batch_statistics

The function is the same, and different values correspond to different default methods. For details, please refer to Typical differences with PyTorch - BatchNorm

Parameter 6

-

gamma_init

PyTorch does not have this parameter, while MindSpore can initialize the value of the parameter gamma

Parameter 7

-

beta_init

PyTorch does not have this parameter, while MindSpore can initialize the value of the parameter beta

Parameter 8

-

moving_mean_init

PyTorch does not have this parameter, while MindSpore can initialize the value of the parameter moving_mean

Parameter 9

-

moving_var_init

PyTorch does not have this parameter, while MindSpore can initialize the value of the parameter moving_var

Parameter 10

-

data_format

PyTorch does not have this parameter

Input

Single input

input

x

Same function, different parameter names

Code Example

The two APIs achieve the same function and have the same usage.

# PyTorch
import torch
import numpy as np
from torch import nn, tensor

net = nn.BatchNorm1d(4, affine=False, momentum=0.1)
x = tensor(np.array([[0.7, 0.5, 0.5, 0.6], [0.5, 0.4, 0.6, 0.9]]).astype(np.float32))
output = net(x)
print(output.detach().numpy())
# [[ 0.9995001   0.9980063  -0.998006   -0.99977785]
#  [-0.9995007  -0.9980057   0.998006    0.99977785]]

# MindSpore
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor

net = nn.BatchNorm1d(num_features=4, affine=False, momentum=0.9)
net.set_train()
# BatchNorm1d<num_features=4, eps=1e-05, momentum=0.9, gamma=Parameter (name=gamma, shape=(4,), dtype=Float32, requires_grad=False), beta=Parameter (name=beta, shape=(4,), dtype=Float32, requires_grad=False), moving_mean=Parameter (name=mean, shape=(4,), dtype=Float32, requires_grad=False), moving_variance=Parameter (name=variance, shape=(4,), dtype=Float32, requires_grad=False)>

x = Tensor(np.array([[0.7, 0.5, 0.5, 0.6], [0.5, 0.4, 0.6, 0.9]]).astype(np.float32))
output = net(x)
print(output.asnumpy())
# [[ 0.9995001  0.9980063 -0.998006  -0.9997778]
#  [-0.9995007 -0.9980057  0.998006   0.9997778]]