Function Differences with torch.nn.AvgPool2d

View Source On Gitee

torch.nn.AvgPool2d

torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)(input) -> Tensor

For more information, see torch.nn.AvgPool2d.

mindspore.nn.AvgPool2d

mindspore.nn.AvgPool2d(kernel_size=1, stride=1, pad_mode='valid', padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None, data_format='NCHW')(x) -> Tensor

For more information, see mindspore.nn.AvgPool2d.

Differences

PyTorch: Apply two-dimensional averaging pooling to an input signal consisting of multiple input planes.

MindSpore: This API implementation function of MindSpore is compatible with TensorFlow and PyTorch, When pad_mode is “valid” or “same”, the function is consistent with TensorFlow, and when pad_mode is “pad”, the function is consistent with PyTorch, compared with PyTorch 1.8.1, MindSpore additionally supports 3D input, which is consistent with PyTorch 1.12.

Categories

Subcategories

PyTorch

MindSpore

Differences

Parameters

Parameter 1

kernel_size

kernel_size

Consistent function, no default values for PyTorch

Parameter 2

stride

stride

Consistent function, different default values of parameters

Parameter 3

padding

padding

Consistent

Parameter 4

ceil_mode

ceil_mode

Consistent

Parameter 5

count_include_pad

count_include_pad

Consistent

Parameter 6

divisor_override

divisor_override

Consistent

Parameter 7

-

pad_mode

MindSpore specifies how the pooling will be filled, with optional values of “same”, “valid” or “pad”. PyTorch does not have this parameter

Parameter 8

-

data_format

Specify the input data format in MindSpore, either “NHWC” or “NCHW”. PyTorch does not have this parameter

Input

Single input

input

x

Same function, different parameter names

Code Example 1

The two APIs achieve the same function and have the same usage.

# PyTorch
import torch
import torch.nn as nn

m = nn.AvgPool2d(kernel_size=1, stride=1)
input_x = torch.tensor([[[[1, 0, 1], [0, 1, 1]]]],dtype=torch.float32)
output = m(input_x)
print(output.numpy())
# [[[[1. 0. 1.]
#    [0. 1. 1.]]]]

# MindSpore
import mindspore
import mindspore.nn as nn
from mindspore import Tensor

pool = nn.AvgPool2d(kernel_size=1, stride=1)
x = Tensor([[[[1, 0, 1], [0, 1, 1]]]], dtype=mindspore.float32)
output = pool(x)
print(output)
# [[[[1. 0. 1.]
#    [0. 1. 1.]]]]

Code Example 2

Use pad mode to ensure functional consistency.

import torch
import mindspore.nn as nn
import mindspore.ops as ops

pool = nn.AvgPool2d(4, stride=1, ceil_mode=True, pad_mode='pad', padding=2)
x1 = ops.randn(6, 6, 8, 8)
output = pool(x1)
print(output.shape)
# (6, 6, 9, 9)

pool = torch.nn.AvgPool2d(4, stride=1, ceil_mode=True, padding=2)
x1 = torch.randn(6, 6, 8, 8)
output = pool(x1)
print(output.shape)
# torch.Size([6, 6, 9, 9])