mindspore.ops.nll_loss

mindspore.ops.nll_loss(inputs, target, weight=None, ignore_index=- 100, reduction='mean', label_smoothing=0.0)[source]

Gets the negative log likelihood loss between inputs and target.

The nll loss with reduction=none can be described as:

β„“(x,t)=L={l1,…,lN}⊀,ln=βˆ’wtnxn,tn,wc= weight [c]β‹…1{cβ‰ ignore_index},

where x is the inputs, t is the target, w is the weight, N is the batch size, c belonging to [0,Cβˆ’1] is class index, where C is the number of classes.

If reduction is not β€˜none’ (default β€˜mean’), then

β„“(x,t)={βˆ‘n=1N1βˆ‘n=1Nwtnln, if reduction = 'mean', βˆ‘n=1Nln, if reduction = 'sum' 
Parameters
  • inputs (Tensor) – (N,C) where C = number of classes or (N,C,H,W) in case of 2D Loss, or (N,C,d1,d2,...,dK). inputs is expected to be log-probabilities, data type must be float16 or float32.

  • target (Tensor) – (N) or (N,d1,d2,...,dK) for high-dimensional loss, data type must be int32.

  • weight (Tensor) – A rescaling weight applied to the loss of each batch element. If not None, the shape is (C,). The data type must be float16 or float32. Default: None.

  • ignore_index (int) – Specifies a target value that is ignored and does not contribute to the input gradient. Default: -100

  • reduction (str) – Apply specific reduction method to the output: β€˜none’, β€˜mean’, or β€˜sum’. Default: β€˜mean’.

  • label_smoothing (float) – Label smoothing values, a regularization tool used to prevent the model from overfitting when calculating Loss. The value range is [0.0, 1.0]. Default value: 0.0.

Returns

Tensor, the computed loss value.

Supported Platforms:

Ascend GPU CPU

Examples

>>> inputs = mindspore.Tensor(np.random.randn(3, 5), mindspore.float32)
>>> target = mindspore.Tensor(np.array([1, 0, 4]), mindspore.int32)
>>> output = ops.nll_loss(inputs, target)