Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.ops.conv3d

mindspore.ops.conv3d(input, weight, bias=None, stride=1, pad_mode='valid', padding=0, dilation=1, groups=1)[source]

Applies a 3D convolution over an input tensor. The input tensor is typically of shape (N,Cin,Din,Hin,Win) and output shape (N,Cout,Dout,Hout,Wout), where N is batch size, C is channel number, D is depth, H,W is feature height and width respectively. the output value of a layer is calculated as:

out(Ni,Coutj)=bias(Coutj)+k=0Cin1ccor(weight(Coutj,k),input(Ni,k))

where k is kernel, ccor is the cross-correlation , Cin is the channel number of the input, outj corresponds to the jth channel of the output and j is in the range of [0,Cout1]. weight(Coutj,k) is a convolution kernel slice with shape (kernel_size[0],kernel_size[1],kernel_size[2]), where kernel_size[0], kernel_size[1] and kernel_size[2] are the depth, height and width of the convolution kernel respectively. bias is the bias parameter and X is the input tensor. The shape of full convolution kernel is (Cout,Cin/groups,kernel_size[0],kernel_size[1],kernel_size[2]), where groups is the number of groups to split input in the channel dimension.

For more details, please refer to the paper Gradient Based Learning Applied to Document Recognition .

Note

  1. On Ascend platform, groups=1 must be satisfied.

  2. On Ascend dilation on depth only supports the case of 1.

Parameters
  • input (Tensor) – Tensor of shape (N,Cin,Din,Hin,Win).

  • weight (Tensor) – Set size of kernel is (kernel_size[0],kernel_size[1],kernel_size[2]), then the shape is (Cout,Cin,kernel_size[0],kernel_size[1],kernel_size[1]).

  • bias (Tensor) – Bias Tensor with shape (Cout). When bias is None, zeros will be used. Default: None.

  • stride (Union[int, tuple[int]], optional) – The distance of kernel moving, it can be an int number that represents the depth, height and width of movement or a tuple of three int numbers that represent depth, height and width movement respectively. Default: 1.

  • pad_mode (str, optional) –

    Specifies padding mode. The optional values are “same”, “valid” and “pad”. Default: “valid”.

    • same: Adopts the way of completion. The depth, height and width of the output will be equal to the input x divided by stride. The padding will be evenly calculated in head and tail, top and bottom, left and right directions possiblily. Otherwise, the last extra padding will be calculated from the tail, bottom and the right side. If this mode is set, pad must be 0.

    • valid: Adopts the way of discarding. The possible largest depth, height and width of output will be returned without padding. Extra pixels will be discarded. If this mode is set, pad must be 0.

    • pad: Implicit paddings on both sides of the input in depth, height and width. The number of pad will be padded to the input Tensor borders. pad must be greater than or equal to 0.

  • padding (Union[int, tuple[int]], optional) – The pad value to be filled. If pad is an integer, the paddings of head, tail, top, bottom, left and right are the same, equal to pad. If pad is a tuple of 3 integers, the padding of head, tail, top, bottom, left and right equal to pad[0], pad[0], pad[1], pad[1], pad[2] and pad[2] correspondingly. Default: 0.

  • dilation (Union[int, tuple[int]], optional) – The data type is int or a tuple of 3 integers (dilationd,dilationh,dilationw). Currently, dilation on depth only supports the case of 1 on Ascend backend. Specifies the dilation rate to use for dilated convolution. If set k>1, there will be k1 pixels skipped for each sampling location. The value ranges for the depth, height, and width dimensions are [1, D], [1, H], and [1, W], respectively. Default: 1.

  • groups (int, optional) – The number of groups into which the filter is divided. in_channels and out_channels must be divisible by group. Default: 1.

Returns

Tensor, the value that applied 3D convolution. The shape is (N,Cout,Dout,Hout,Wout).

pad_mode is ‘same’:

DoutDinstride[0]HoutHinstride[1]WoutWinstride[2]

pad_mode is ‘valid’:

DoutDindilation[0]×(kernel_size[0]1)stride[0]+1HoutHindilation[1]×(kernel_size[1]1)stride[1]+1WoutWindilation[2]×(kernel_size[2]1)stride[2]+1

pad_mode is ‘pad’:

DoutDin+padding[0]+padding[1](dilation[0]1)×kernel_size[0]1stride[0]+1HoutHin+padding[2]+padding[3](dilation[1]1)×kernel_size[1]1stride[1]+1WoutWin+padding[4]+padding[5](dilation[2]1)×kernel_size[2]1stride[2]+1

Raises
  • TypeError – If out_channel or groups is not an int.

  • TypeError – If stride, padding or dilation is neither an int nor a tuple.

  • TypeError – If bias is not a Tensor.

  • ValueError – If the shape of bias is not Cout.

  • ValueError – If stride or dilation is less than 1.

  • ValueError – If pad_mode is not one of ‘same’, ‘valid’ or ‘pad’.

  • ValueError – If padding is a tuple whose length is not equal to 4.

  • ValueError – If pad_mode is not equal to ‘pad’ and pad is greater than 0.

Supported Platforms:

Ascend GPU CPU

Examples

>>> x = Tensor(np.ones([16, 3, 10, 32, 32]), mindspore.float16)
>>> weight = Tensor(np.ones([32, 3, 4, 3, 3]), mindspore.float16)
>>> output = ops.conv3d(x, weight, pad_mode="same", padding=0, stride=1, dilation=1, groups=1)
>>> print(output.shape)
(16, 32, 10, 32, 32)
>>> output = ops.conv3d(x, weight, pad_mode="valid", padding=0, stride=1, dilation=1, groups=1)
>>> print(output.shape)
(16, 32, 7, 30, 30)
>>> output = ops.conv3d(x, weight, pad_mode="pad", padding=(2, 1, 1), stride=1, dilation=1, groups=1)
>>> print(output.shape)
(16, 32, 11, 32, 32)