mindspore.ops.SoftShrink
- class mindspore.ops.SoftShrink(lambd=0.5)[source]
Applies the SoftShrink function element-wise.
Refer to
mindspore.ops.softshrink()
for more details.- Parameters
lambd (float, optional) – The \(\lambda\) must be no less than zero. Default: 0.5.
- Inputs:
input_x (Tensor) - The input of soft shrink with data type of float16 or float32.
- Outputs:
Tensor, has the same shape and data type as input_x.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_x = Tensor(np.array([[ 0.5297, 0.7871, 1.1754], [ 0.7836, 0.6218, -1.1542]]), mindspore.float16) >>> softshrink = ops.SoftShrink() >>> output = softshrink(input_x) >>> print(output) [[ 0.02979 0.287 0.676 ] [ 0.2837 0.1216 -0.6543 ]]