Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.ops.ScatterUpdate

class mindspore.ops.ScatterUpdate(use_locking=True)[source]

Updates tensor values by using input indices and value.

Using given values to update tensor value, along with the input indices.

for each i, …, j in indices.shape:

input_x[indices[i,...,j],:]=updates[i,...,j,:]

Inputs of input_x and updates comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type.

Parameters

use_locking (bool) – Whether to protect the assignment by a lock. Default: True.

Inputs:
  • input_x (Parameter) - The target tensor, with data type of Parameter. The shape is 0-D or (N,) where means,any number of additional dimensions.

  • indices (Tensor) - The index of input tensor. With int32 data type. If there are duplicates in indices, the order for updating is undefined.

  • updates (Tensor) - The tensor to update the input tensor, has the same type as input, and updates.shape = indices.shape + input_x.shape[1:].

Outputs:

Tensor, has the same shape and type as input_x.

Raises
  • TypeError – If use_locking is not a bool.

  • TypeError – If indices is not an int32.

  • ValueError – If the shape of updates is not equal to indices.shape + input_x.shape[1:].

  • RuntimeError – If the data type of input_x and updates conversion of Parameter is required when data type conversion of Parameter is not supported.

Supported Platforms:

Ascend GPU CPU

Examples

>>> np_x = np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]])
>>> input_x = mindspore.Parameter(Tensor(np_x, mindspore.float32), name="x")
>>> indices = Tensor(np.array([0, 1]), mindspore.int32)
>>> np_updates = np.array([[2.0, 1.2, 1.0], [3.0, 1.2, 1.0]])
>>> updates = Tensor(np_updates, mindspore.float32)
>>> op = ops.ScatterUpdate()
>>> output = op(input_x, indices, updates)
>>> print(output)
[[2. 1.2  1.]
 [3. 1.2  1.]]