mindspore.nn.TransformerEncoderLayer

class mindspore.nn.TransformerEncoderLayer(d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1, activation: Union[str, Cell, callable] = 'relu', layer_norm_eps: float = 1e-05, batch_first: bool = False, norm_first: bool = False)[source]

Transformer Encoder Layer. This is an implementation of the single layer of the transformer encoder layer, including multihead attention and feedward layer.

Parameters
  • d_model (int) – The number of features in the input tensor.

  • nhead (int) – The number of heads in the MultiheadAttention modules.

  • dim_feedforward (int) – The dimension of the feedforward layer. Default: 2048.

  • dropout (float) – The dropout value. Default: 0.1.

  • activation (Union[str, callable, Cell]) – The activation function of the intermediate layer, can be a string (“relu” or “gelu”), Cell instance (nn.ReLU() or nn.GELU()) or a callable (ops.relu or ops.gelu). Default: "relu".

  • layer_norm_eps (float) – The epsilon value in LayerNorm modules. Default: 1e-5.

  • batch_first (bool) – If batch_first = True, then the shape of input and output tensors is \((batch, seq, feature)\) , otherwise the shape is \((seq, batch, feature)\) . Default: False.

  • norm_first (bool) – If norm_first = True, layer norm is done prior to attention and feedforward operations, respectively. Default: False.

Inputs:
  • src (Tensor): the sequence to the encoder layer.

  • src_mask (Tensor, optional): the mask for the src sequence. Default: None.

  • src_key_padding_mask (Tensor, optional): the mask for the src keys per batch. Default: None.

Outputs:

Tensor.

Supported Platforms:

Ascend GPU CPU

Examples

>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> src = Tensor(np.random.rand(10, 32, 512), mindspore.float32)
>>> out = encoder_layer(src)
>>> # Alternatively, when batch_first=True:
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
>>> src = Tensor(np.random.rand(32, 10, 512), mindspore.float32)
>>> out = encoder_layer(src)
>>> print(out.shape)
(32, 10, 512)