Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.nn.TransformerEncoderLayer

class mindspore.nn.TransformerEncoderLayer(d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1, activation: Union[str, Cell, callable] = 'relu', layer_norm_eps: float = 1e-05, batch_first: bool = False, norm_first: bool = False)[source]

Transformer Encoder Layer. This is an implementation of the single layer of the transformer encoder layer, including multihead attention and feedward layer.

Parameters
  • d_model (int) – The number of features in the input tensor.

  • nhead (int) – The number of heads in the MultiheadAttention modules.

  • dim_feedforward (int) – The dimension of the feedforward layer. Default: 2048.

  • dropout (float) – The dropout value. Default: 0.1.

  • activation (Union[str, callable, Cell]) – The activation function of the intermediate layer, can be a string (“relu” or “gelu”), Cell instance (nn.ReLU() or nn.GELU()) or a callable (ops.relu or ops.gelu). Default: "relu".

  • layer_norm_eps (float) – The epsilon value in LayerNorm modules. Default: 1e-5.

  • batch_first (bool) – If batch_first = True, then the shape of input and output tensors is (batch,seq,feature) , otherwise the shape is (seq,batch,feature) . Default: False.

  • norm_first (bool) – If norm_first = True, layer norm is done prior to attention and feedforward operations, respectively. Default: False.

Inputs:
  • src (Tensor): the sequence to the encoder layer.

  • src_mask (Tensor, optional): the mask for the src sequence. Default: None.

  • src_key_padding_mask (Tensor, optional): the mask for the src keys per batch. Default: None.

Outputs:

Tensor.

Supported Platforms:

Ascend GPU CPU

Examples

>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> src = Tensor(np.random.rand(10, 32, 512), mindspore.float32)
>>> out = encoder_layer(src)
>>> # Alternatively, when batch_first=True:
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
>>> src = Tensor(np.random.rand(32, 10, 512), mindspore.float32)
>>> out = encoder_layer(src)
>>> print(out.shape)
(32, 10, 512)