mindspore.nn.ReplicationPad2d
- class mindspore.nn.ReplicationPad2d(padding)[source]
Pad on HW dimension of input x according to padding.
- Parameters
The padding size to pad the last two dimension of x .
If padding is an integer, all directions will be padded with the same size.
If padding is a tuple, uses \((pad_{left}, pad_{right}, pad_{up}, pad_{down})\) to pad.
- Inputs:
x (Tensor) - 3D or 4D, shape: \((C, H_{in}, W_{in})\) or \((N, C, H_{in}, W_{in})\).
- Outputs:
Tensor, after padding. Shape: \((C, H_{out}, W_{out})\) or \((N, C, H_{out}, W_{out})\), where \(H_{out} = H_{in} + pad_{up} + pad_{down}\), \(W_{out} = W_{in} + pad_{left} + pad_{right}\).
- Raises
TypeError – If padding is neither a tuple nor an int.
TypeError – If there is an element in padding that is not int.
ValueError – If padding is tuple and the length of padding is not divisible by 2.
ValueError – If padding is tuple and there is a dimension mismatch between the padding and the tensor.
- Supported Platforms:
GPU
Examples
>>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> from mindspore.nn import ReplicationPad2d >>> pad2d = ReplicationPad2d(2) >>> input = Tensor(np.arange(0, 9).reshape(1, 1, 3, 3), mindspore.float32) >>> print(input) [[[[0. 1. 2.] [3. 4. 5.] [6. 7. 8.]]]] >>> out = pad2d(input) >>> print(out) [[[[0. 0. 0. 1. 2. 2. 2.] [0. 0. 0. 1. 2. 2. 2.] [0. 0. 0. 1. 2. 2. 2.] [3. 3. 3. 4. 5. 5. 5.] [6. 6. 6. 7. 8. 8. 8.] [6. 6. 6. 7. 8. 8. 8.] [6. 6. 6. 7. 8. 8. 8.]]]] >>> pad2d = ReplicationPad2d((1, 1, 2, 0)) >>> out = pad2d(input) >>> print(out) [[[[0. 0. 1. 2. 2.] [0. 0. 1. 2. 2.] [0. 0. 1. 2. 2.] [3. 3. 4. 5. 5.] [6. 6. 7. 8. 8.]]]]