Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.nn.RNNCell

class mindspore.nn.RNNCell(input_size: int, hidden_size: int, has_bias: bool = True, nonlinearity: str = 'tanh')[source]

An Elman RNN cell with tanh or ReLU non-linearity.

ht=tanh(Wihxt+bih+Whhh(t1)+bhh)

Here ht is the hidden state at time t, xt is the input at time t, and h(t1) is the hidden state of the previous layer at time t1 or the initial hidden state at time 0. If nonlinearity is relu, then relu is used instead of tanh.

Parameters
  • input_size (int) – Number of features of input.

  • hidden_size (int) – Number of features of hidden layer.

  • has_bias (bool) – Whether the cell has bias b_ih and b_hh. Default: True.

  • nonlinearity (str) – The non-linearity to use. Can be either tanh or relu. Default: tanh.

Inputs:
  • x (Tensor) - Tensor of shape (batch_size,input_size) .

  • hx (Tensor) - Tensor of data type mindspore.float32 and shape (batch_size,hidden_size) . Data type of hx must be the same as x.

Outputs:
  • hx’ (Tensor) - Tensor of shape (batch_size,hidden_size) .

Raises
  • TypeError – If input_size or hidden_size is not an int or not greater than 0.

  • TypeError – If has_bias is not a bool.

  • ValueError – If nonlinearity is not in [‘tanh’, ‘relu’].

Supported Platforms:

Ascend GPU CPU

Examples

>>> net = nn.RNNCell(10, 16)
>>> x = Tensor(np.ones([5, 3, 10]).astype(np.float32))
>>> hx = Tensor(np.ones([3, 16]).astype(np.float32))
>>> output = []
>>> for i in range(5):
...     hx = net(x[i], hx)
...     output.append(hx)
>>> print(output[0].shape)
(3, 16)