mindspore.nn.MultiMarginLoss

class mindspore.nn.MultiMarginLoss(p=1, margin=1.0, reduction='mean', weight=None)[source]

Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between input x (a 2D mini-batch Tensor) and output y (which is a 1D tensor of target class indices, 0yx.size(1)1):

For each mini-batch sample, the loss in terms of the 1D input x and scalar output y is:

loss(x,y)=imax(0,w[y](marginx[y]+x[i]))px.size(0)

where x{0,,x.size(0)1} and iy.

Parameters
  • p (int, optional) – The norm degree for pairwise distance. Should be 1 or 2. Default: 1.

  • margin (float, optional) – A parameter to change pairwise distance. Default: 1.0.

  • reduction (str, optional) –

    Apply specific reduction method to the output: ‘none’, ‘mean’, ‘sum’. Default: ‘mean’.

    • ’none’: no reduction will be applied.

    • ’mean’: the sum of the output will be divided by the number of elements in the output.

    • ’sum’: the output will be summed.

  • weight (Tensor, optional) – The rescaling weight to each class with shape (C,). Data type only support float32, float16 or float64. Default: None, all classes are weighted equally.

Inputs:
  • x (Tensor) - Input x, with shape (N,C). Data type only support float32, float16 or float64. x is x in the above formula.

  • target (Tensor) - Ground truth labels, with shape (N,). Data type only support int64. The value of target should be non-negative, less than C. target is y in the above formula.

Outputs:

Tensor, When reduction is ‘none’, the shape is (N,). Otherwise, it is a scalar. Has the same data type with x.

Raises
  • TypeError – If dtype of p or target is not int.

  • TypeError – If dtype of margin is not float.

  • TypeError – If dtype of reduction is not str.

  • TypeError – If dtype of x is not float16, float or float64.

  • TypeError – If dtype of weight and x is not the same.

  • ValueError – If ‘p’ is not 1 or 2.

  • ValueError – If ‘reduction’ is not one of {‘none’,’sum’,’mean’}.

  • ValueError – If shape[0] of x is not equal to shape[0] of target.

  • ValueError – If shape[1] of x is not equal to shape[0] of weight.

  • ValueError – IF rank of weight is not 1.

  • ValueError – If rank of x is not 2 or rank of ‘target’ is not 1.

Supported Platforms:

Ascend GPU CPU

Examples

>>> x = Tensor(np.ones(shape=[3, 3]), mindspore.float32)
>>> target = Tensor(np.array([1, 2, 1]), mindspore.int64)
>>> loss = nn.MultiMarginLoss()
>>> output = loss(x, target)
>>> print(output)
0.6666667