Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.nn.LARS

class mindspore.nn.LARS(optimizer, epsilon=1e-05, coefficient=0.001, use_clip=False, lars_filter=lambda x: ...)[source]

Implements the LARS algorithm.

LARS is an optimization algorithm employing a large batch optimization technique. Refer to paper LARGE BATCH TRAINING OF CONVOLUTIONAL NETWORKS.

The updating formulas are as follows,

Parameters:base learning rate γ0, momentum m, weight decay λ, LARS coefficient η, number of steps TInit: t=0, v=0, init weight w0l for each layer lwhile t<T for each layer l dogtlL(wtl)γtγ0(1tT)2γlηwtlgtl+λwtl(compute the local LR γl)vt+1lmvtl+γt+1γl(gtl+λwtl)wt+1lwtlvt+1l end while 

w represents the network parameters, g represents gradients, t represents the current step, λ represents weight_decay in optimizer, γ represents learning_rate in optimizer, η represents coefficient.

Parameters
  • optimizer (Optimizer) – MindSpore optimizer for which to wrap and modify gradients.

  • epsilon (float) – Term added to the denominator to improve numerical stability. Default: 1e-05.

  • coefficient (float) – Trust coefficient for calculating the local learning rate. Default: 0.001.

  • use_clip (bool) – Whether to use clip operation for calculating the local learning rate. Default: False.

  • lars_filter (Function) – A function to determine which of the network parameters to use LARS algorithm. Default: lambda x: ‘LayerNorm’ not in x.name and ‘bias’ not in x.name.

Inputs:
  • gradients (tuple[Tensor]) - The gradients of params in the optimizer, the shape is the as same as the params in the optimizer.

Outputs:

Union[Tensor[bool], tuple[Parameter]], it depends on the output of optimizer.

Supported Platforms:

Ascend

Examples

>>> import mindspore as ms
>>> from mindspore import nn
>>>
>>> # Define the network structure of LeNet5. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.0/docs/mindspore/code/lenet.py
>>> net = LeNet5()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> opt = nn.Momentum(net.trainable_params(), 0.1, 0.9)
>>> opt_lars = nn.LARS(opt, epsilon=1e-08, coefficient=0.02)
>>> model = ms.Model(net, loss_fn=loss, optimizer=opt_lars, metrics=None)