# Function Differences with torch.nn.functional.pad

torch.nn.functional.pad

torch.nn.functional.pad(
    input,
    pad,
    mode='constant',
    value=0
)

For more information, see torch.nn.functional.pad.

mindspore.ops.pad

mindspore.ops.pad(
    input_x,
    padding,
    mode='constant',
    value=None
)

For more information, see mindspore.ops.pad.

Differences

PyTorch:The pad parameter is a tuple with m values, m/2 is less than or equal to the dimension of the input data, and m is even. Negative dimensions are supported. Assuming pad=(k1, k2, …, kl, km), the shape of the input x is (d1, d2…, dg), then the two sides of the dg dimension are filled with the values of lengths k1 and k2 respectively. Similarly, the two sides of the d1 dimension are filled with the values of length kl and km respectively.

MindSpore:The function and usage of the padding parameter of MindSpore is completely consistent with that of the pad parameter of PyTorch. In addition, MindSpore supports the input form of Tensor type in addition to PyTorch.

Classification

Subclass

PyTorch

MindSpore

difference

parameter

parameter1

input

input_x

Same functions, different parameter names

parameter2

pad

padding

Same functions, different parameter names

parameter3

mode

mode

The functions are consistent. MindSpore is temporarily missing the circular mode

parameter4

value

value

The functions are consistent. In constant mode, the default value is 0 when MindSpore enters the parameter None

Code Example

# In MindSpore.
import numpy as np
import torch
import mindspore.ops as ops
import mindspore as ms

x = ms.Tensor(np.ones([1, 2, 2, 3]).astype(np.float32))
padding = (1, 1, 2, 2)
output = ops.pad(x, padding)
print(output.shape)
# Out:
# (1, 2, 6, 5)

# In Pytorch.
x = torch.empty(1, 2, 2, 3)
pad = (1, 1, 2, 2)
output = torch.nn.functional.pad(x, pad)
print(output.size())
# Out:
# torch.Size([1, 2, 6, 5])