Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.train.MSE

class mindspore.train.MSE[source]

Measures the mean squared error(MSE).

Creates a criterion that measures the MSE (squared L2 norm) between each element in the prediction and the ground truth: x and: y.

MSE(x, y)=i=1n(y_prediyi)2n

where n is batch size.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> from mindspore.train import MSE
>>>
>>> x = Tensor(np.array([0.1, 0.2, 0.6, 0.9]), mindspore.float32)
>>> y = Tensor(np.array([0.1, 0.25, 0.5, 0.9]), mindspore.float32)
>>> error = MSE()
>>> error.clear()
>>> error.update(x, y)
>>> result = error.eval()
>>> print(result)
0.0031250009778887033
clear()[source]

Clear the internal evaluation result.

eval()[source]

Computes the mean squared error(MSE).

Returns

numpy.float64. The computed result.

Raises

RuntimeError – If the number of samples is 0.

update(*inputs)[source]

Updates the internal evaluation result ypred and y.

Parameters

inputs – Input y_pred and y for calculating the MSE where the shape of y_pred and y are both N-D and the shape should be the same.

Raises

ValueError – If the number of inputs is not 2.