mindspore.ops.max_unpool3d
- mindspore.ops.max_unpool3d(x, indices, kernel_size, stride=None, padding=0, output_size=None)[source]
Computes a partial inverse of maxpool3d.
maxpool3d is not fully invertible, since the non-maximal values are lost.
max_unpool3d takes the output of maxpool3d as input including the indices of the maximal values and computes a partial inverse in which all non-maximal values are set to zero. Typically the input is of shape \((N, C, D_{in}, H_{in}, W_{in})\) or \((C, D_{in}, H_{in}, W_{in})\), and the output is of shape \((N, C, D_{out}, H_{out}, W_{out})\) or \((C, D_{out}, H_{out}, W_{out})\). The operation is as follows.
\[\begin{split}\begin{array}{ll} \\ D_{out} = (D{in} - 1) \times stride[0] - 2 \times padding[0] + kernel\_size[0] \\ H_{out} = (H{in} - 1) \times stride[1] - 2 \times padding[1] + kernel\_size[1] \\ W_{out} = (W{in} - 1) \times stride[2] - 2 \times padding[2] + kernel\_size[2] \\ \end{array}\end{split}\]- Parameters
x (Tensor) – The input Tensor to invert. Tensor of shape \((N, C, D_{in}, H_{in}, W_{in})\) or \((C, D_{in}, H_{in}, W_{in})\).
indices (Tensor) – Max values’ index represented by the indices. Tensor of shape must be same with input ‘x’. Values of indices must belong to \([0, D_{in} \times H_{in} \times W_{in} - 1]\). Data type must be in int32 or int64.
kernel_size (Union[int, tuple[int]]) – The size of kernel used to take the maximum value, an int number that represents depth, height and width of the kernel, or a tuple of three int numbers that represent depth, height and width respectively.
stride (Union[int, tuple[int]]) – The distance of kernel moving, an int number that represents the depth, height and width of movement are both stride, or a tuple of three int numbers that represent depth, height and width of movement respectively. If stride is 0, (0, 0, 0) or None, then stride equal to kernel_size. Default: None.
padding (Union[int, tuple[int]]) – The pad value to be filled. Default: 0. If padding is an integer, the paddings of depth, height and width are the same, equal to padding. If padding is a tuple of three integers, the padding of depth, height and width equal to padding[0], padding[1] and padding[2] correspondingly.
output_size (tuple[int], optional) – The output size. Default: None. If output_size == (), then the shape of output computed by kernel_size, stride and padding. If output_size != (), then output_size must be \((N, C, D, H, W)\) or \((C, D, H, W)\) and output_size must belong to \([(N, C, D_{out} - stride[0], H_{out} - stride[1], W_{out} - stride[2]), (N, C, D_{out} + stride[0], H_{out} + stride[1], W_{out} + stride[2])]\).
- Returns
Tensor, with shape \((N, C, D_{out}, H_{out}, W_{out})\) or \((C, D_{out}, H_{out}, W_{out})\), with the same data type with x.
- Raises
TypeError – If data type of x or indices is not supported.
TypeError – If kernel_size, stride or padding is neither an int nor a tuple.
ValueError – If numbers in stride or padding (also support 0 and (0, 0, 0)) or kernel_size is not positive.
ValueError – If the shape of x and indices are not equal.
ValueError – If kernel_size, stride or padding is a tuple whose length is not equal to 3.
ValueError – If x whose length is not 4 or 5.
ValueError – If output_size whose length is not 0, 4 or 5.
ValueError – If output_size whose type is not tuple.
ValueError – If output_size is not close to output size computed by attr kernel_size, stride, padding.
- Supported Platforms:
GPU
CPU
Examples
>>> x = Tensor(np.array([[[[[0, 1], [8, 9]]]]]).astype(np.float32)) >>> indices= Tensor(np.array([[[[[0, 1], [2, 3]]]]]).astype(np.int64)) >>> output = ops.max_unpool3d(x, indices, kernel_size=2, stride=1, padding=0) >>> print(output) [[[[[0. 1. 8.] [9. 0. 0.] [0. 0. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.]]]]]