mindspore.ops.kl_div
- mindspore.ops.kl_div(logits, labels, reduction='mean')[source]
Computes the Kullback-Leibler divergence between the logits and the labels.
The updating formulas of KLDivLoss algorithm are as follows,
\[L = \{l_1,\dots,l_N\}^\top, \quad l_n = target_n \cdot (\log target_n - x_n)\]Then,
\[\begin{split}\ell(x, target) = \begin{cases} L, & \text{if reduction} = \text{'none';}\\ \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\ \operatorname{batchmean}(L), & \text{if reduction} = \text{'batchmean';}\\ \operatorname{sum}(L), & \text{if reduction} = \text{'sum'.} \end{cases}\end{split}\]where \(x\) represents logits. \(target\) represents labels. \(\ell(x, target)\) represents output.
Note
Currently it does not support float64 input on Ascend.
The output aligns with the mathematical definition of Kullback-Leibler divergence only when reduction is set to ‘batchmean’.
- Parameters
logits (Tensor) – The input Tensor. The data type must be float16, float32 or float64.
labels (Tensor) – The label Tensor which has the same shape and data type as logits.
reduction (str) – Specifies the reduction to be applied to the output. Its value must be one of ‘none’, ‘mean’, ‘batchmean’ or ‘sum’. Default: ‘mean’.
- Returns
Tensor or Scalar, if reduction is ‘none’, then output is a tensor and has the same shape as logits. Otherwise, it is a scalar.
- Raises
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> logits = Tensor(np.array([0.2, 0.7, 0.1]), mindspore.float32) >>> labels = Tensor(np.array([0., 1., 0.]), mindspore.float32) >>> output = mindspore.ops.kl_div(logits, labels, 'mean') >>> print(output) -0.23333333