mindspore.ops.cholesky
- mindspore.ops.cholesky(input_x, upper=False)[source]
Computes the Cholesky decomposition of a symmetric positive-definite matrix \(A\) or for batches of symmetric positive-definite matrices.
If upper is True, the returned matrix \(U\) is upper-triangular, and the decomposition has the form:
\[A = U^TU\]If upper is False, the returned matrix \(L\) is lower-triangular, and the decomposition has the form:
\[A = LL^T\]- Parameters
- Returns
Tensor, has the same shape and data type as input_x.
- Raises
TypeError – If upper is not a bool.
TypeError – If dtype of input_x is not one of: float64, float32.
TypeError – If input_x is not a Tensor.
ValueError – If input_x is not a or a batch of square matrix.
ValueError – If input_x is not symmetric positive definite.
- Supported Platforms:
Ascend
CPU
Examples
>>> input_x = Tensor(np.array([[1.0, 1.0], [1.0, 2.0]]), mindspore.float32) >>> output = ops.cholesky(input_x, upper=False) >>> print(output) [[1. 0.] [1. 1.]]