Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.nn.Conv1d

class mindspore.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, pad_mode='same', padding=0, dilation=1, group=1, has_bias=False, weight_init='normal', bias_init='zeros')[source]

Calculates the 1D convolution on the input tensor. The input is typically of shape (N,Cin,Lin), where N is batch size, Cin is a number of channels and Lin is a length of sequence. For the tensor of each batch, its shape is (Cin,Lin), and the formula is defined as:

out(Ni,Coutj)=bias(Coutj)+k=0Cin1ccor(weight(Coutj,k),X(Ni,k))

where ccor is the cross-correlation, Cin is the channel number of the input, outj corresponds to the jth channel of the output and j is in the range of [0,Cout1]. weight(Coutj,k) is a convolution kernel slice with shape kernel_size, where kernel_size is the width of the convolution kernel. bias is the bias parameter, and X is the input tensor. The shape of full convolution kernel is (Cout,Cin/group,kernel_size), where group is the number of groups to split the input x in the channel dimension.

For more details, please refers to the paper Gradient Based Learning Applied to Document Recognition.

Note

On Ascend platform, only group convolution in depthwise convolution scenarios is supported. That is, when group>1, condition in_channels = out_channels = group must be satisfied.

Parameters
  • in_channels (int) – The channel number of the input tensor of the Conv1d layer.

  • out_channels (int) – The channel number of the output tensor of the Conv1d layer.

  • kernel_size (int) – Specifies the width of the 1D convolution kernel.

  • stride (int) – The movement stride of the 1D convolution kernel. Default: 1.

  • pad_mode (str) –

    Specifies padding mode. The optional values are “same”, “valid”, “pad”. Default: “same”.

    • same: The width of the output is the same as the value of the input divided by stride. If this mode is set, the value of padding must be 0.

    • valid: Returns a valid calculated output without padding. Excess pixels that do not satisfy the calculation will be discarded. If this mode is set, the value of padding must be 0.

    • pad: Pads the input. Padding padding size of zero on both sides of the input. If this mode is set, the value of padding must be greater than or equal to 0.

  • padding (int) – The number of padding on both sides of input. The value should be greater than or equal to 0. Default: 0.

  • dilation (int) – Dilation size of 1D convolution kernel. If k>1, the kernel is sampled every k elements. The value of k is in range of [1, L]. Default: 1.

  • group (int) – Splits filter into groups, in_channels and out_channels must be divisible by group. Default: 1.

  • has_bias (bool) – Whether the Conv1d layer has a bias parameter. Default: False.

  • weight_init (Union[Tensor, str, Initializer, numbers.Number]) – Initialization method of weight parameter. It can be a Tensor, a string, an Initializer or a numbers.Number. When a string is specified, values from ‘TruncatedNormal’, ‘Normal’, ‘Uniform’, ‘HeUniform’ and ‘XavierUniform’ distributions as well as constant ‘One’ and ‘Zero’ distributions are possible. Alias ‘xavier_uniform’, ‘he_uniform’, ‘ones’ and ‘zeros’ are acceptable. Uppercase and lowercase are both acceptable. Refer to the values of Initializer for more details. Default: ‘normal’.

  • bias_init (Union[Tensor, str, Initializer, numbers.Number]) – Initialization method of bias parameter. Available initialization methods are the same as ‘weight_init’. Refer to the values of Initializer for more details. Default: ‘zeros’.

Inputs:
  • x (Tensor) - Tensor of shape (N,Cin,Lin).

Outputs:

Tensor of shape (N,Cout,Lout).

pad_mode is ‘same’:

Lout=Linstride

pad_mode is ‘valid’:

Lout=Lindilation×(kernel_size1)stride

pad_mode is ‘pad’:

Lout=Lin+2×padding(kernel_size1)×dilation1stride+1
Raises
  • TypeError – If in_channels, out_channels, kernel_size, stride, padding or dilation is not an int.

  • ValueError – If in_channels, out_channels, kernel_size, stride or dilation is less than 1.

  • ValueError – If padding is less than 0.

  • ValueError – If pad_mode is not one of ‘same’, ‘valid’, ‘pad’.

Supported Platforms:

Ascend GPU CPU

Examples

>>> net = nn.Conv1d(120, 240, 4, has_bias=False, weight_init='normal')
>>> x = Tensor(np.ones([1, 120, 640]), mindspore.float32)
>>> output = net(x).shape
>>> print(output)
(1, 240, 640)