mindspore.dataset.vision.RandomCropWithBBox
- class mindspore.dataset.vision.RandomCropWithBBox(size, padding=None, pad_if_needed=False, fill_value=0, padding_mode=Border.CONSTANT)[source]
Crop the input image at a random location and adjust bounding boxes accordingly.
- Parameters
size (Union[int, Sequence[int]]) – The output size of the cropped image. The size value(s) must be positive. If size is an integer, a square crop of size (size, size) is returned. If size is a sequence of length 2, an image of size (height, width) will be cropped.
padding (Union[int, Sequence[int]], optional) – The number of pixels to pad the image The padding value(s) must be non-negative. Default: None. If padding is not None, first pad image with padding values. If a single number is provided, pad all borders with this value. If a tuple or lists of 2 values are provided, pad the (left and right) with the first value and (top and bottom) with the second value. If 4 values are provided as a list or tuple, pad the left, top, right and bottom respectively.
pad_if_needed (bool, optional) – Pad the image if either side is smaller than the given output size. Default: False.
fill_value (Union[int, tuple[int]], optional) – The pixel intensity of the borders, only valid for padding_mode Border.CONSTANT. If it is a 3-tuple, it is used to fill R, G, B channels respectively. If it is an integer, it is used for all RGB channels. The fill_value values must be in range [0, 255]. Default: 0.
padding_mode (Border, optional) –
The method of padding. Default: Border.CONSTANT. It can be any of [Border.CONSTANT, Border.EDGE, Border.REFLECT, Border.SYMMETRIC].
Border.CONSTANT, means it fills the border with constant values.
Border.EDGE, means it pads with the last value on the edge.
Border.REFLECT, means it reflects the values on the edge omitting the last value of edge.
Border.SYMMETRIC, means it reflects the values on the edge repeating the last
value of edge.
Note
The behavior when padding is a sequence of length 2 will change from padding left/top with the first value and right/bottom with the second, to padding left/right with the first one and top/bottom with the second in the future. Or you can pass in a 4-element sequence to specify left, top, right and bottom respectively.
- Raises
TypeError – If size is not of type int or Sequence[int].
TypeError – If padding is not of type int or Sequence[int].
TypeError – If pad_if_needed is not of type boolean.
TypeError – If fill_value is not of type int or tuple[int].
TypeError – If padding_mode is not of type
mindspore.dataset.vision.Border
.ValueError – If size is not positive.
ValueError – If padding is negative.
ValueError – If fill_value is not in range [0, 255].
RuntimeError – If given tensor shape is not <H, W> or <H, W, C>.
- Supported Platforms:
CPU
Examples
>>> decode_op = vision.Decode() >>> random_crop_with_bbox_op = vision.RandomCropWithBBox([512, 512], [200, 200, 200, 200]) >>> transforms_list = [decode_op, random_crop_with_bbox_op] >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns=["image"])