Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Problem description

Agree to Privacy Statement

mindspore.ops.scatter_nd_add

mindspore.ops.scatter_nd_add(input_x, indices, updates, use_locking=False)[source]

Applies sparse addition to individual values or slices in a tensor.

Using given values to update tensor value through the add operation, along with the input indices. This operation outputs the input_x after the update is done, which makes it convenient to use the updated value.

input_x has rank P and indices has rank Q where Q >= 2.

indices has shape (i0,i1,...,iQ2,N) where N <= P.

The last dimension of indices (with length N ) indicates slices along the N th dimension of input_x.

updates is a tensor of rank Q-1+P-N. Its shape is: (i0,i1,...,iQ2,x_shapeN,...,x_shapeP1).

Parameters
  • input_x (Parameter) – The target tensor, with data type of Parameter. The shape is (N,) where means,any number of additional dimensions.

  • indices (Tensor) – The index to do min operation whose data type must be mindspore.int32 or mindspore.int64. The rank of indices must be at least 2 and indices.shape[-1] <= len(shape).

  • updates (Tensor) – The tensor doing the addition operation with input_x, the data type is same as input_x, the shape is indices.shape[:-1] + x.shape[indices.shape[-1]:].

  • use_locking (bool) – Whether to protect the assignment by a lock. Default: False.

Returns

Tensor, the updated input_x, has the same shape and type as input_x.

Raises
  • TypeError – If the dtype of use_locking is not bool.

  • TypeError – If the dtype of indices is not int32 or int64.

  • TypeError – If dtype of input_x and updates are not the same.

  • ValueError – If the shape of updates is not equal to indices.shape[:-1] + x.shape[indices.shape[-1]:].

  • RuntimeError – If the data type of input_x and updates conversion of Parameter is required when data type conversion of Parameter is not supported.

Supported Platforms:

Ascend GPU CPU

Examples

>>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x")
>>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32)
>>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32)
>>> output = ops.scatter_nd_add(input_x, indices, updates, False)
>>> print(output)
[ 1. 10.  9.  4. 12.  6.  7. 17.]
>>> input_x = Parameter(Tensor(np.zeros((4, 4, 4)), mindspore.int32))
>>> indices = Tensor(np.array([[0], [2]]), mindspore.int32)
>>> updates = Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]],
...                            [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]]), mindspore.int32)
>>> output = ops.scatter_nd_add(input_x, indices, updates, False)
>>> print(output)
[[[1 1 1 1]
  [2 2 2 2]
  [3 3 3 3]
  [4 4 4 4]]
 [[0 0 0 0]
  [0 0 0 0]
  [0 0 0 0]
  [0 0 0 0]]
 [[5 5 5 5]
  [6 6 6 6]
  [7 7 7 7]
  [8 8 8 8]]
 [[0 0 0 0]
  [0 0 0 0]
  [0 0 0 0]
  [0 0 0 0]]]