Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.ops.scatter_max

mindspore.ops.scatter_max(input_x, indices, updates)[source]

Using given values to update tensor value through the max operation, along with the input indices. This operation outputs the input_x after the update is done, which makes it convenient to use the updated value.

Parameters
  • input_x (Parameter) – The target tensor, with data type of Parameter. The shape is (N,) where means,any number of additional dimensions.

  • indices (Tensor) – The index to do max operation whose data type must be mindspore.int32.

  • updates (Tensor) – The tensor doing the max operation with input_x, the data type is same as input_x, the shape is indices.shape + x.shape[1:].

Returns

Tensor, the updated input_x, the type and shape same as input_x.

Raises
  • TypeError – If indices is not an int32 or int64.

  • ValueError – If the shape of updates is not equal to indices.shape + input_x.shape[1:].

  • RuntimeError – If the data type of input_x and updates conversion of Parameter is required when data type conversion of Parameter is not supported.

  • RuntimeError – On the Ascend platform, the input data dimension of input_x , indices and updates is greater than 8 dimensions.

Supported Platforms:

Ascend CPU GPU

Examples

>>> input_x = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32), name="input_x")
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
>>> updates = Tensor(np.ones([2, 2, 3]) * 88, mindspore.float32)
>>> output = ops.scatter_max(input_x, indices, updates)
>>> print(output)
[[88. 88. 88.]
 [88. 88. 88.]]