mindspore.ops.renorm

mindspore.ops.renorm(input_x, p, dim, maxnorm)[source]

Renormalizes the sub-tensors along dimension dim, and each sub-tensor’s p-norm should not exceed the ‘maxnorm’. The values of current sub-tensor don’t need change if the p-norm of the sub-tensor is less than maxnorm. Otherwise the sub-tensor needs to be modified to the original value of the corresponding position divided by the p-norm of the substensor and then multiplied by maxnorm.

Parameters
  • input_x – A Tensor, types: float32 or float16.

  • p (float) – Power of norm calculation.

  • dim (int) – The dimension that expected to get the slice-tensor.

  • maxnorm (float) – Max norm.

Returns

Tensor, has the same dtype and shape as input_x.

Raises
Supported Platforms:

Ascend CPU GPU

Examples

>>> x = Tensor(np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]), mindspore.float32)
>>> y = ops.renorm(x, p=1, dim=0, maxnorm=5.)
>>> print(y)
[[1.       1.        1.        ]
[1.6666666 1.6666666 1.6666666 ]
[1.6666667 1.6666667 1.6666667 ]]