mindspore.History
- class mindspore.History[source]
Records the network outputs and metrics information into a History object.
The network outputs information will be the loss value if not custimizing the train network or eval network; if the custimized network returns a Tensor or numpy.ndarray, the mean value of network output will be recorded, if the custimized network returns a tuple or list, the first element of network outputs will be recorded.
Note
Normally used in mindspore.Model.train or mindspore.Model.fit.
Examples
>>> import numpy as np >>> import mindspore as ms >>> import mindspore.dataset as ds >>> from mindspore import nn >>> data = {"x": np.float32(np.random.rand(64, 10)), "y": np.random.randint(0, 5, (64,))} >>> train_dataset = ds.NumpySlicesDataset(data=data).batch(32) >>> net = nn.Dense(10, 5) >>> crit = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') >>> opt = nn.Momentum(net.trainable_params(), 0.01, 0.9) >>> history_cb = ms.History() >>> model = ms.Model(network=net, optimizer=opt, loss_fn=crit, metrics={"recall"}) >>> model.train(2, train_dataset, callbacks=[history_cb]) >>> print(history_cb.epoch) >>> print(history_cb.history) {'epoch': [1, 2]} {'net_output': [1.607877, 1.6033841]}
- begin(run_context)[source]
Initialize the epoch property at the begin of training.
- Parameters
run_context (RunContext) – Context of the mindspore.Model.{train | eval}. For more details, please refer to
mindspore.RunContext
.
- epoch_end(run_context)[source]
Records the first element of network outputs and metrics information at the end of epoch.
- Parameters
run_context (RunContext) – Context of the mindspore.Model.{train | eval}. For more details, please refer to
mindspore.RunContext
.