Source code for mindspore.ops.operations.other_ops

# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""Other operators."""
import functools
from mindspore import log as logger
from .. import signature as sig
from ..._checkparam import Validator as validator, Rel
from ...common import dtype as mstype
from ..primitive import Primitive, PrimitiveWithCheck, PrimitiveWithInfer, prim_attr_register
from ._pyfunc_registry import add_pyfunc


[docs]class Assign(Primitive): """ Assigns `Parameter` with a value. Refer to :func:`mindspore.ops.assign` for more detail. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> value = Tensor([2.0], mindspore.float32) >>> variable = mindspore.Parameter(Tensor([1.0], mindspore.float32), name="variable") >>> assign = ops.Assign() >>> output = assign(variable, value) >>> print(output) [2.] """ __mindspore_signature__ = ( sig.make_sig('variable', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('value', dtype=sig.sig_dtype.T) ) @prim_attr_register def __init__(self): """Initialize Assign.""" self.init_prim_io_names(inputs=['ref', 'value'], outputs=['output']) self.add_prim_attr('side_effect_mem', True)
class Load(PrimitiveWithCheck): """ Load `Parameter` to a value. Inputs: - **variable** (Parameter) - The `Parameter`. Outputs: Tensor - The loaded parameter tensor value. """ __mindspore_signature__ = ( sig.make_sig('variable', sig.sig_rw.RW_READ, dtype=sig.sig_dtype.T), sig.make_sig('u', dtype=sig.sig_dtype.T1) ) @prim_attr_register def __init__(self): """Initialize Load.""" self.init_prim_io_names(inputs=['ref', 'u'], outputs=['output']) def check_dtype(self, variable): if variable != mstype.type_refkey: validator.check_tensors_dtypes_same_and_valid({"variable": variable}, mstype.number_type, self.name) class _DynamicLossScale(PrimitiveWithInfer): """ Dynamic multi layer loss scale operator. Inputs: - **input_x** (Tensor) - Output of last operator. - **loss_scale** (Tensor) - Dynamic loss scale. Outputs: Tensor - The same as `input_x`. """ __mindspore_signature__ = ( sig.make_sig('input_x', dtype=sig.sig_dtype.T), sig.make_sig('loss_scale', dtype=sig.sig_dtype.T) ) @prim_attr_register def __init__(self, layer=-1): """Initialize DynamicLossScale.""" validator.check_value_type('layer', layer, (int,), self.name) self.init_prim_io_names(inputs=['input_x', 'loss_scale'], outputs=['output']) def infer_shape(self, input_x, loss_scale): return input_x def infer_dtype(self, input_x, loss_scale): return input_x
[docs]class BoundingBoxEncode(PrimitiveWithInfer): """ Encodes bounding boxes locations. This operator will calculate the offset between the predicted bounding boxes and the real bounding boxes, and this offset will be used as a variable for the loss. Args: means (tuple): Means for encoding bounding boxes calculation. Default: (0.0, 0.0, 0.0, 0.0). stds (tuple): The standard deviations of deltas calculation. Default: (1.0, 1.0, 1.0, 1.0). Inputs: - **anchor_box** (Tensor) - Anchor boxes. The shape of anchor_box must be (n, 4). - **groundtruth_box** (Tensor) - Ground truth boxes. Which has the same shape with anchor_box. Outputs: Tensor, encoded bounding boxes. It has the same data type and shape as input `anchor_box`. Raises: TypeError: If `means` or `stds` is not a tuple. TypeError: If `anchor_box` or `groundtruth_box` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> anchor_box = Tensor([[2, 2, 2, 3], [2, 2, 2, 3]], mindspore.float32) >>> groundtruth_box = Tensor([[1, 2, 1, 4], [1, 2, 1, 4]], mindspore.float32) >>> boundingbox_encode = ops.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)) >>> output = boundingbox_encode(anchor_box, groundtruth_box) >>> print(output) [[ -1. 0.25 0. 0.40551758] [ -1. 0.25 0. 0.40551758]] """ @prim_attr_register def __init__(self, means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)): """Initialize BoundingBoxEncode.""" validator.check_value_type('means', means, tuple, self.name) validator.check_value_type('stds', stds, tuple, self.name) for i, value in enumerate(means): validator.check_value_type("means[%d]" % i, value, [float], self.name) for i, value in enumerate(stds): validator.check_value_type("stds[%d]" % i, value, [float], self.name) validator.check_equal_int(len(means), 4, "means len", self.name) validator.check_equal_int(len(stds), 4, "stds len", self.name) def infer_shape(self, anchor_box, groundtruth_box): validator.check('anchor_box shape[0]', anchor_box[0], 'groundtruth_box shape[0]', groundtruth_box[0], Rel.EQ, self.name) validator.check("anchor_box rank", len(anchor_box), "", 2, Rel.EQ, self.name) validator.check("groundtruth_box rank", len(groundtruth_box), "", 2, Rel.EQ, self.name) validator.check_equal_int(anchor_box[1], 4, 'anchor_box shape[1]', self.name) validator.check_equal_int(groundtruth_box[1], 4, 'groundtruth_box shape[1]', self.name) return anchor_box def infer_dtype(self, anchor_box, groundtruth_box): args = {"anchor_box": anchor_box, "groundtruth_box": groundtruth_box} validator.check_tensors_dtypes_same_and_valid(args, mstype.number_type, self.name) return anchor_box
class BartlettWindow(Primitive): r""" Bartlett window function. The input "window_length" is a tensor that datatype must be a integer, which controlling the returned window size. In particular, If "window_length" = 1, the returned window contains a single value 1. Attr "periodic" determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions. Therefore, if attr "periodic" is true, the "N" in formula is in fact "window_length" + 1. .. math:: w[n] = 1 - \left| \frac{2n}{N-1} - 1 \right| = \begin{cases} \frac{2n}{N - 1} & \text{if } 0 \leq n \leq \frac{N - 1}{2} \\ 2 - \frac{2n}{N - 1} & \text{if } \frac{N - 1}{2} < n < N \\ \end{cases}, \text{where : N is the full window size.} Args: periodic(bool): If True, returns a window to be used as periodic function. If False, return a symmetric window. Default: True. dtype(mindspore.dtype): The desired datatype of returned tensor. Only float16, float32 and float64 is allowed. Default: mstype.float32. Inputs: - **window_length** (Tensor) - The size of returned window, with data type int32, int64. The input data should be an integer with a value of [0, 1000000]. Outputs: A 1-D tensor of size "window_length" containing the window. Its datatype is set by the attr 'dtype'. Raises: TypeError: If "window_length" is not a Tensor. TypeError: If the type of "window_length" is not one of: int32, int64. TypeError: If "periodic" is not a bool. TypeError: If "dtype" is not one of: float16, float32, float64. ValueError: If the value range of "window_length" is not [0,1000000]. ValueError: If the dimension of "window_length" is not 0. Supported Platforms: ``GPU`` Examples: >>> window_length = Tensor(5, mstype.int32) >>> bartlett_window = ops.BartlettWindow(periodic=True, dtype=mstype.float32) >>> output = bartlett_window(window_length) >>> print(output) [0. 0.4 0.8 0.8 0.4] """ @prim_attr_register def __init__(self, periodic=True, dtype=mstype.float32): """Initialize BartlettWindow""" self.add_prim_attr("max_length", 1000000) validator.check_value_type("periodic", periodic, [bool], self.name) validator.check_value_type("dtype", dtype, [mstype.Type], self.name) valid_values = (mstype.float16, mstype.float32, mstype.float64) validator.check_type_name("dtype", dtype, valid_values, self.name)
[docs]class BoundingBoxDecode(Primitive): """ Decodes bounding boxes locations. The function of the operator is to calculate the offset, and this operator converts the offset into a Bbox, which is used to mark the target in the subsequent images, etc. Args: means (tuple): The means of deltas calculation. Default: (0.0, 0.0, 0.0, 0.0). stds (tuple): The standard deviations of deltas calculation. Default: (1.0, 1.0, 1.0, 1.0). max_shape (tuple): The max size limit for decoding box calculation. wh_ratio_clip (float): The limit of width and height ratio for decoding box calculation. Default: 0.016. Inputs: - **anchor_box** (Tensor) - Anchor boxes. The shape of `anchor_box` must be (n, 4). - **deltas** (Tensor) - Delta of boxes. Which has the same shape with `anchor_box`. Outputs: Tensor, decoded boxes. It has the same data type and shape as `anchor_box`. Raises: TypeError: If `means`, `stds` or `max_shape` is not a tuple. TypeError: If `wh_ratio_clip` is not a float. TypeError: If `anchor_box` or `deltas` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> anchor_box = Tensor([[4, 1, 2, 1], [2, 2, 2, 3]], mindspore.float32) >>> deltas = Tensor([[3, 1, 2, 2], [1, 2, 1, 4]], mindspore.float32) >>> boundingbox_decode = ops.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), ... max_shape=(768, 1280), wh_ratio_clip=0.016) >>> output = boundingbox_decode(anchor_box, deltas) >>> print(output) [[ 4.1953125 0. 0. 5.1953125] [ 2.140625 0. 3.859375 60.59375 ]] """ @prim_attr_register def __init__(self, max_shape, means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), wh_ratio_clip=0.016): """Initialize BoundingBoxDecode.""" validator.check_value_type('means', means, tuple, self.name) validator.check_value_type('stds', stds, tuple, self.name) for i, value in enumerate(means): validator.check_value_type("means[%d]" % i, value, [float], self.name) for i, value in enumerate(stds): validator.check_value_type("stds[%d]" % i, value, [float], self.name) validator.check_value_type('wh_ratio_clip', wh_ratio_clip, [float], self.name) validator.check_equal_int(len(means), 4, "means len", self.name) validator.check_equal_int(len(stds), 4, "stds len", self.name) if max_shape is not None: validator.check_value_type('max_shape', max_shape, [tuple], self.name) validator.check_equal_int(len(max_shape), 2, "max_shape len", self.name)
class SampleDistortedBoundingBoxV2(Primitive): r""" Generate a single randomly distorted bounding box for an image. Bounding box annotations are often supplied in addition to ground-truth labels in image recognition or object localization tasks. A common technique for training such a system is to randomly distort an image while preserving its content, i.e. data augmentation. This Op outputs a randomly distorted localization of an object, i.e. bounding box, given an `image_size`, `bounding_boxes` and a series of constraints. The output is returned as 3 tensors: `begin`, `size` and `bboxes`. The first 2 tensors can be fed directly into mindspore.ops.Slice to crop the image. The latter is the generated distorted bounding box. Args: seed (int): If either seed or seed2 are set to non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed. Default: 0. seed2 (int): A second seed to avoid seed collision. Default: 0. aspect_ratio_range (Union[list(float), tuple(float)]): The cropped area of the image must have an aspect ratio = width / height within this range. The value of this attribute should be positive. Default: (0.75, 1.33). area_range (Union[list(float), tuple(float)]): The cropped area of the image must contain a fraction of the supplied image within this range. The value of this attribute should be in range (0.0, 1.0]. Default: (0.05, 1.0). max_attempts (int): Number of attempts at generating a cropped region of the image of the specified constraints. After max_attempts failures, return the entire image. The value of this attribute should be positive. Default: 100. use_image_if_no_bounding_boxes (bool): Controls behavior if no bounding boxes supplied. If no bounding boxes supplied (`bounding_boxes` in shape [0, N, 4] or [batch, 0, 4]), and this attribute is set True, then assume an implicit bounding box covering the whole input, else if this attribute is set False, then raise an error. Default: False. Inputs: - **image_size** (Tensor) - 1-D, containing [height, width, channels]. The value of this input tensor should be positive. - **bounding_boxes** (Tensor) - 3-D with shape [batch, N, 4] describing the N bounding boxes associated with the image. The value of this input tensor should be in range [0.0, 1.0]. The data type is float32. - **min_object_covered** (Tensor) - The cropped area of the image must contain at least this fraction of any bounding box supplied. The value of this parameter should be in range [0.0, 1.0]. In the case of 0, the cropped area does not need to overlap any of the bounding boxes supplied. The data type is float32. Outputs: - **begin** (Tensor) - A 1-D Tensor, containing [offset_height, offset_width, 0]. The data type is same as `image_size`. - **size** (Tensor) - A 1-D Tensor, containing [target_height, target_width, -1]. The data type is same as `image_size`. When the data type of `image_size` is uint8, the last value of `size`, which is originally -1, will be forced to 255. - **bboxes** (Tensor) - A 3-D Tensor with shape [1, 1, 4], containing the distorted bounding box. The data type is float32. Raises: TypeError: If `image_size` is not a Tensor. TypeError: If `bounding_boxes` is not a Tensor. TypeError: If `min_object_covered` is not a Tensor. TypeError: If `seed` is not an int. TypeError: If `seed2` is not an int. TypeError: If `aspect_ratio_range` is not a list or a tuple with type float. TypeError: If `area_range` is not a list or a tuple with type float. TypeError: If `max_attempts` is not an int. TypeError: If `use_image_if_no_bounding_boxes` is not a bool. ValueError: If the dimension of `image_size` is not 1. ValueError: If the elements of `image_size` is not 3. ValueError: If the dimension of `bounding_boxes` is not 3. ValueError: If the elements of each bounding box in `bounding_boxes` is not 4. ValueError: If the dimension of `min_object_covered` is not 1. ValueError: If the elements of `min_object_covered` is not 1. ValueError: If the elements of `aspect_ratio_range` list or tuple is not 2. ValueError: If the values of `aspect_ratio_range` is not positive. ValueError: If the second value of `aspect_ratio_range` is less than or equal to the first one. ValueError: If the elements of `area_range` list or tuple is not 2. ValueError: If the values of `area_range` is out of range (0.0, 1.0]. ValueError: If the second value of `area_range` is less than or equal to the first one. ValueError: If the value of `max_attempts` is not positive. ValueError: If `use_image_if_no_bounding_boxes` is False and no bounding boxes supplied. RuntimeError: If the values of `image_size` is not positive. RuntimeError: If the values of `bounding_boxes` is out of range [0.0, 1.0]. RuntimeError: If the `bounding_boxes` cannot make up a bounding boxes. RuntimeError: If the value of `min_object_covered` is out of range [0.0, 1.0]. Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> image_size = Tensor([640, 480, 3], mindspore.int32) >>> bounding_boxes = Tensor([[[0.38, 0.17, 0.95, 0.40]]], mindspore.float32) >>> min_object_covered = Tensor([0.8], mindspore.float32) >>> sample_distorted_bounding_box_v2 = \ ... ops.SampleDistortedBoundingBoxV2(seed=1, seed2=1, aspect_ratio_range=(0.9, 1.1), ... area_range=(0.1,1.0), max_attempts=100, ... use_image_if_no_bounding_boxes=False) >>> output = sample_distorted_bounding_box_v2(image_size, bounding_boxes, min_object_covered) >>> begin, size, bboxes = output[0], output[1], output[2] >>> print(begin) [133 1 0] >>> print(size) [502 457 -1] >>> print(bboxes) [[[0.2078125 0.00208333 0.9921875 0.95416665]]] """ @prim_attr_register def __init__(self, seed=0, seed2=0, \ aspect_ratio_range=(0.75, 1.33), \ area_range=(0.05, 1.0), \ max_attempts=100, \ use_image_if_no_bounding_boxes=False): validator.check_is_int(seed, "seed", self.name) validator.check_is_int(seed2, "seed2", self.name) validator.check_value_type("aspect_ratio_range", aspect_ratio_range, [list, tuple], self.name) validator.check_value_type("area_range", area_range, [list, tuple], self.name) validator.check_positive_int(max_attempts, "max_attempts", self.name) validator.check_bool(use_image_if_no_bounding_boxes, "use_image_if_no_bounding_boxes", self.name) for i, value in enumerate(aspect_ratio_range): validator.check_value_type("aspect_ratio_range[%d]" % i, value, [float], self.name) for i, value in enumerate(area_range): validator.check_value_type("area_range[%d]" % i, value, [float], self.name)
[docs]class CheckValid(PrimitiveWithInfer): """ Checks bounding box. Checks whether the bounding box cross data and data border are valid. .. warning:: specifying the valid boundary (heights x ratio, weights x ratio). Inputs: - **bboxes** (Tensor) - Bounding boxes tensor with shape (N, 4). "N" indicates the number of bounding boxes, the value "4" indicates "x0", "x1", "y0", and "y1". Data type must be float16 or float32. - **img_metas** (Tensor) - Raw image size information with the format of (height, width, ratio), specifying the valid boundary(height * ratio, width * ratio). Data type must be float16 or float32. Outputs: Tensor, with shape of (N,) and dtype of bool, specifying whether the bounding boxes is in the image. "True" indicates valid, while "False" indicates invalid. Raises: TypeError: If `bboxes` or `img_metas` is not a Tensor. TypeError: If dtype of `bboxes` or `img_metas` is neither float16 nor float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import mindspore.nn as nn >>> import numpy as np >>> from mindspore import Tensor, ops >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.check_valid = ops.CheckValid() ... def construct(self, x, y): ... valid_result = self.check_valid(x, y) ... return valid_result ... >>> bboxes = Tensor(np.linspace(0, 6, 12).reshape(3, 4), mindspore.float32) >>> img_metas = Tensor(np.array([2, 1, 3]), mindspore.float32) >>> net = Net() >>> output = net(bboxes, img_metas) >>> print(output) [ True False False] """ @prim_attr_register def __init__(self): """Initialize CheckValid.""" self.init_prim_io_names(inputs=['bboxes', 'img_metas'], outputs=['output']) def infer_shape(self, bboxes_shape, metas_shape): validator.check("bboxes rank", len(bboxes_shape), "", 2, Rel.EQ, self.name) validator.check("bboxes_shape[-1]", bboxes_shape[-1], "", 4, Rel.EQ, self.name) validator.check("img_metas rank", len(metas_shape), "", 1, Rel.EQ, self.name) validator.check("img_metas shape[0]", metas_shape[0], "", 3, Rel.EQ, self.name) return bboxes_shape[:-1] def infer_dtype(self, bboxes_type, metas_type): valid_type = [mstype.float32, mstype.float16, mstype.int16, mstype.uint8] validator.check_tensor_dtype_valid("bboxes_type", bboxes_type, valid_type, self.name) validator.check_tensor_dtype_valid("metas_type", metas_type, valid_type, self.name) return mstype.bool_
[docs]class IOU(Primitive): r""" Calculates intersection over union for boxes. Computes the intersection over union (IOU) or the intersection over foreground (IOF) based on the ground-truth and predicted regions. .. math:: \text{IOU} = \frac{\text{Area of Overlap}}{\text{Area of Union}} \text{IOF} = \frac{\text{Area of Overlap}}{\text{Area of Ground Truth}} .. warning:: In Ascend, only computation of float16 data is supported. To avoid overflow, the input length and width are scaled by 0.2 internally. Args: mode (string): The mode is used to specify the calculation method, now supporting 'iou' (intersection over union) or 'iof' (intersection over foreground) mode. Default: 'iou'. Inputs: - **anchor_boxes** (Tensor) - Anchor boxes, tensor of shape (N, 4). "N" indicates the number of anchor boxes, and the value "4" refers to "x0", "y0", "x1", and "y1". Data type must be float16 or float32. - **gt_boxes** (Tensor) - Ground truth boxes, tensor of shape (M, 4). "M" indicates the number of ground truth boxes, and the value "4" refers to "x0", "y0", "x1", and "y1". Data type must be float16 or float32. Outputs: Tensor, the 'iou' values, tensor of shape (M, N), with the same data type as `anchor_boxes`. Raises: KeyError: When `mode` is not 'iou' or 'iof'. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> iou = ops.IOU() >>> anchor_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float16) >>> gt_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float16) >>> output = iou(anchor_boxes, gt_boxes) >>> print(output.shape) (3, 3) """ @prim_attr_register def __init__(self, mode='iou'): """Initialize IOU.""" if mode not in {'iou', 'iof'}: raise KeyError(f"For '{self.name}', only 'iou' or 'iof' are supported, but got 'mode': {mode}.") self.init_prim_io_names(inputs=['anchor_boxes', 'gt_boxes'], outputs=['overlap'])
[docs]class Partial(Primitive): """ Makes a partial function instance. Partial function can be used to derived specialized functions from general functions by fixing the value of certain number of arguments. Inputs: - **args** (Union[FunctionType, Tensor]) - The function and bind arguments. Outputs: FunctionType, partial function bound with arguments. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import Tensor >>> from mindspore.ops import operations as P >>> def show_input(x, y, z): ... return x, y, z >>> partial = P.Partial() >>> partial_show_input = partial(show_input, Tensor(1)) >>> output1 = partial_show_input(Tensor(2), Tensor(3)) >>> print(output1) (Tensor(shape=[], dtype=Int64, value= 1), Tensor(shape=[], dtype=Int64, value= 2), Tensor(shape=[], dtype=Int64, value= 3)) >>> output2 = partial_show_input(Tensor(3), Tensor(4)) >>> print(output2) (Tensor(shape=[], dtype=Int64, value= 1), Tensor(shape=[], dtype=Int64, value= 3), Tensor(shape=[], dtype=Int64, value= 4)) """ # Side effect will propagated from the first argument to return value. side_effect_propagate = 1 @prim_attr_register def __init__(self): """Initialize Partial.""" self.add_prim_attr('side_effect_propagate', 1) def __call__(self, *args): func = args[0].__call__ partial_func = functools.partial(func, *args[1:]) return partial_func
[docs]class Depend(Primitive): """ Depend is used for processing dependency operations. In most scenarios, if operators have IO side effects or memory side effects, they will be executed according to the user's semantics. In some scenarios, if the two operators A and B have no order dependency, and A must be executed before B, we recommend using Depend to specify their execution order. The usage method is as follows:: a = A(x) ---> a = A(x) b = B(y) ---> y = Depend(y, a) ---> b = B(y) Inputs: - **value** (Tensor) - the real value to return for depend operator. - **expr** (Expression) - the expression to execute with no outputs. Outputs: Tensor, the value passed by last operator. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> import mindspore.nn as nn >>> import mindspore.ops as ops >>> from mindspore import Tensor >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.softmax = ops.Softmax() ... self.depend = ops.Depend() ... ... def construct(self, x, y): ... mul = x * y ... y = self.depend(y, mul) ... ret = self.softmax(y) ... return ret ... >>> x = Tensor(np.ones([4, 5]), dtype=mindspore.float32) >>> y = Tensor(np.ones([4, 5]), dtype=mindspore.float32) >>> net = Net() >>> output = net(x, y) >>> print(output) [[0.2 0.2 0.2 0.2 0.2] [0.2 0.2 0.2 0.2 0.2] [0.2 0.2 0.2 0.2 0.2] [0.2 0.2 0.2 0.2 0.2]] """ # Side effect will propagated from the first argument to return value. side_effect_propagate = 1 @prim_attr_register def __init__(self): """Initialize Depend.""" self.add_prim_attr('side_effect_propagate', 1) def __call__(self, value, expr): return value
class UpdateState(Primitive): """ UpdateState is used for update side-effect state. Inputs: - **value** (State) - the state value to be updated. - **expr** (Expression) - the expression to evaluate before state changes. Outputs: State, the updated state value. """ @prim_attr_register def __init__(self): pass def __call__(self, state, expr): return state
[docs]class CheckBprop(PrimitiveWithInfer): """ Checks whether the data type and the shape of corresponding elements from tuples x and y are the same. Args: prim_to_check (str): The name of the primitive being checked. Default: ''. Inputs: - **input_x** (tuple[Tensor]) - The `input_x` contains the outputs of bprop to be checked. - **input_y** (tuple[Tensor]) - The `input_y` contains the inputs of bprop to check against. Outputs: Tuple[Tensor], the `input_x`, if data type and shape of corresponding elements from `input_x` and `input_y` are the same. Raises: TypeError: If `input_x` or `input_y` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.op = ops.CheckBprop() ... def construct(self, x, y): ... return self.op(x, y) ... >>> net = Net() >>> input_x = (Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32),) >>> input_y = (Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32),) >>> output = net(input_x, input_y) >>> print(output) (Tensor(shape=[2, 2], dtype=Float32, value= [[ 2.00000000e+00, 2.00000000e+00], [ 2.00000000e+00, 2.00000000e+00]]),) """ @prim_attr_register def __init__(self, prim_to_check=""): """Initialize CheckBprop""" self.prim_to_check = prim_to_check def infer_shape(self, xshapes, yshapes): tips = f"user defined method 'bprop'" validator.check_value_type('grads', xshapes, (tuple,), tips) validator.check_value_type('params', yshapes, (tuple,), tips) if not len(xshapes) == len(yshapes): raise ValueError(f"For {tips} the number of return values(gradients) must be equal to " f"the number of input arguments except 'out' and 'dout', " f"which is:{len(yshapes)} but got {len(xshapes)}.") checking_range = len(yshapes) for i in range(checking_range): xshape = xshapes[i] yshape = yshapes[i] if not xshape or not yshape: continue if xshape != yshape: raise ValueError(f"For {tips}, the {i}th return value(gradient of the {i}th argument) " f"should have the same shape as the {i}th argument, " f"which is:{yshape}, but got: {xshape}.") return xshapes def infer_dtype(self, xdtypes, ydtypes): tips = f"user defined method 'bprop'" validator.check_value_type('grads', xdtypes, (tuple,), tips) validator.check_value_type('params', ydtypes, (tuple,), tips) if not len(xdtypes) == len(ydtypes): raise ValueError(f"For {tips}, the number of return values(gradients) must be equal to " f"the number of input arguments except 'out' and 'dout', " f"which is:{len(ydtypes)} but got {len(xdtypes)}.") checking_range = len(ydtypes) for i in range(checking_range): xdtype = xdtypes[i] ydtype = ydtypes[i] if isinstance(xdtype, mstype.anything_type) or isinstance(ydtype, mstype.anything_type): continue if isinstance(ydtype, mstype.function_type): if not isinstance(xdtype, mstype.env_type_type): raise TypeError(f"For {tips}, the {i}th return value(gradient of the {i}th argument) type " f"should be {mstype.env_type_type}, but got {xdtype}.") continue if xdtype != ydtype: raise TypeError(f"For {tips}, the {i}th return value(gradient of the {i}th argument) " f"should have the same dtype as the {i}th argument, " f"which is:{ydtype}, but got: {xdtype}.") return xdtypes
class ConfusionMatrix(PrimitiveWithInfer): r""" Calculates the confusion matrix from labels and predictions. Args: num_classes (int): The num of classes. dtype (str): Data type of confusion matrix. Default: 'int32'. Inputs: - **labels** (Tensor) - real labels, tensor of 1-D. the dtype must be non-negative Integer. - **predictions** (Tensor) - the labels from prediction, tensor of 1-D. the shape same as `labels` and the dtype must be non-negative Integer. - **weights** (Tensor) - tensor of 1-D. the shape same as `predictions`. Outputs: Tensor, the confusion matrix, with shape (`num_classes`, `num_classes`). Raises: TypeError: If `num_classes` is not an int. TypeError: If `dtype` is not a str. TypeError: If `labels`, `predictions` or weight` is not a Tensor. Examples: >>> confusion_matrix = ops.ConfusionMatrix(4) >>> labels = Tensor([0, 1, 1, 3], mindspore.int32) >>> predictions = Tensor([1, 2, 1, 3], mindspore.int32) >>> output = confusion_matrix(labels, predictions) >>> print(output) [[0 1 0 0] [0 1 1 0] [0 0 0 0] [0 0 0 1]] """ @prim_attr_register def __init__(self, num_classes, dtype="int32"): """Initialize ConfusionMatrix.""" validator.check_value_type("num_classes", num_classes, [int], self.name) validator.check_value_type("dtype", dtype, [str], self.name) def infer_shape(self, labels, predictions, weights=None): validator.check('labels dimension', len(labels), '', 1, Rel.EQ, self.name) validator.check('labels shape', labels, 'predictions shape', predictions, Rel.EQ, self.name) if weights is not None: validator.check('labels shape', labels, 'weights shape', weights, Rel.EQ, self.name) ret = (self.num_classes, self.num_classes) return ret def infer_dtype(self, labels, predictions, weights=None): validator.check_subclass('labels', labels, mstype.tensor, self.name) validator.check_subclass('predictions', predictions, mstype.tensor, self.name) if weights is not None: validator.check_subclass('weights', weights, mstype.tensor, self.name) args = {"labels": labels, "predictions": predictions} validator.check_tensors_dtypes_same_and_valid(args, (mstype.number_type), self.name) return labels class Push(PrimitiveWithInfer): """ Pushes the inputs of the corresponding optimizer to parameter server. Args: optim_type (string): The optimizer type. Default: 'ApplyMomentum'. only_shape_indices (list): The indices of input of which only shape will be pushed to parameter server. Default: None. Inputs: - **optim_inputs** (tuple) - The inputs for this kind of optimizer. - **optim_input_shapes** (tuple) - The shapes of the inputs. Outputs: Tensor, the key of the weight which needs to be updated. """ @prim_attr_register def __init__(self, optim_type='ApplyMomentum', only_shape_indices=None): """Initialize Push""" self.add_prim_attr("primitive_target", "CPU") self.init_prim_io_names(inputs=['optim_inputs', 'optim_input_shapes'], outputs=['key']) self.add_prim_attr("side_effect_hidden", True) def infer_shape(self, inputs, shapes): return [1] def infer_dtype(self, inputs, shapes): return mstype.uint64 class Pull(PrimitiveWithInfer): """ Pulls weight from parameter server. Inputs: - **key** (Tensor) - The key of the weight. - **weight** (Tensor) - The weight to be updated. Outputs: None. """ @prim_attr_register def __init__(self): """Initialize Pull""" self.add_prim_attr("primitive_target", "CPU") self.init_prim_io_names(inputs=['key', 'weight'], outputs=['output']) def infer_shape(self, key_shape, weight_shape): return [1] def infer_dtype(self, key_dtype, weight_dtype): return mstype.float32 class PullWeight(PrimitiveWithInfer): """ Pull weight by its names from server. Inputs: - **weight** (Tensor) - The weight to be pulled. - **name** (String) - The full name of the weight. - **index** (Int) - The index of the weight. Outputs: None. """ @prim_attr_register def __init__(self): """Initialize PullWeight""" self.add_prim_attr("primitive_target", "CPU") self.init_prim_io_names(inputs=['weight', "name", "index"], outputs=['output']) def infer_shape(self, weight, name, index): return [1] def infer_dtype(self, weight, name, index): return mstype.float32 class PushWeight(PrimitiveWithInfer): """ Upload weight by its names to server. Inputs: - **weight** (Tensor) - The weight to be uploaded. - **name** (String) - The full name of the weight. - **index** (Int) - The index of the weight. Outputs: None. """ @prim_attr_register def __init__(self): """Initialize PushWeight""" self.add_prim_attr("primitive_target", "CPU") self.init_prim_io_names(inputs=["weight", "name", "index"], outputs=["output"]) def infer_shape(self, weight, name, index): return [1] def infer_dtype(self, weight, ps_key, index): return mstype.float32 class PushMetrics(PrimitiveWithInfer): """ Push metrics like loss and accuracy for federated learning worker. Inputs: - **loss** (Tensor) - The loss. - **accuracy** (Tensor) - The accuracy. Outputs: None. """ @prim_attr_register def __init__(self): """Initialize PushMetrics""" self.add_prim_attr("primitive_target", "CPU") self.add_prim_attr("side_effect_mem", True) self.init_prim_io_names(inputs=["loss", "accuracy"], outputs=["result"]) def infer_shape(self, loss, accuracy): return [1] def infer_dtype(self, loss, accuracy): return mstype.float32 class StartFLJob(PrimitiveWithInfer): """ StartFLJob for federated learning worker. """ @prim_attr_register def __init__(self, data_size): self.add_prim_attr("primitive_target", "CPU") self.add_prim_attr("data_size", data_size) self.init_prim_io_names(inputs=[], outputs=["result"]) def infer_shape(self): return [1] def infer_dtype(self): return mstype.float32 class UpdateModel(PrimitiveWithInfer): """ UpdateModel for federated learning worker. """ @prim_attr_register def __init__(self, encrypt_mode=""): self.add_prim_attr("primitive_target", "CPU") self.add_prim_attr('side_effect_mem', True) self.add_prim_attr('encrypt_mode', encrypt_mode) self.init_prim_io_names(inputs=["weights"], outputs=["result"]) def infer_shape(self, weights): return [1] def infer_dtype(self, weights): return mstype.float32 class GetModel(PrimitiveWithInfer): """ GetModel for federated learning worker. """ @prim_attr_register def __init__(self): self.add_prim_attr("primitive_target", "CPU") self.add_prim_attr('side_effect_mem', True) self.init_prim_io_names(inputs=["weights"], outputs=["result"]) def infer_shape(self, weights): return [1] def infer_dtype(self, weights): return mstype.float32 class ExchangeKeys(PrimitiveWithInfer): """ Exchange pairwise public keys for federated learning worker. """ @prim_attr_register def __init__(self): self.add_prim_attr("primitive_target", "CPU") self.add_prim_attr('side_effect_mem', True) self.init_prim_io_names(inputs=[], outputs=["result"]) def infer_shape(self): return [1] def infer_dtype(self): return mstype.float32 class GetKeys(PrimitiveWithInfer): """ Get pairwise public keys for federated learning worker. """ @prim_attr_register def __init__(self): self.add_prim_attr("primitive_target", "CPU") self.add_prim_attr('side_effect_mem', True) self.init_prim_io_names(inputs=[], outputs=["result"]) def infer_shape(self): return [1] def infer_dtype(self): return mstype.float32 class identity(Primitive): """ Makes a identify primitive, used for pynative mode. Inputs: - **x** (Any) - identity input value. Outputs: The same as input. """ # Side effect will propagated from the first argument to return value. side_effect_propagate = 1 @prim_attr_register def __init__(self): """Initialize identity.""" self.add_prim_attr('side_effect_propagate', 1) def __call__(self, x): return x class PyFunc(PrimitiveWithInfer): r""" Execute Python function. `PyFunc` encapsulates Python functions as an operator which could be compiled into computation graph. Unlike normal operators, it cannot be exported to MindIR as it is executed in current Python context. As only the weights of the network is stored in the checkpoint, network include `PyFunc` could save checkpoint and load to the network again, but will lose any Python function state. .. warning:: This is an experimental prototype that is subject to change and/or deletion. Args: fn (function): Python function which inputs and outputs should be Python built-in scalar or numpy ndarray. in_types (list[:class:`mindspore.dtype`]): The type of the inputs. in_shapes (list[tuple[int]]): The dimensionality of the inputs. An empty list represents a scalar, otherwise it represent a numpy array. out_types (list[:class:`mindspore.dtype`]): The type of the outputs. out_shapes (list[tuple[int]]): The dimensionality of the outputs. An empty list represents a scalar, otherwise it represent a numpy array. stateful (bool): Whether the function is stateful or not. If True, the execution order is same with model definition. Inputs: - **input_x** (Union(tuple[Tensor], list[Tensor])) - The input tuple or list is made up of multiple tensors. Outputs: tuple[Tensor], execution results Python functions. Raises: TypeError: The Python function execution failed. TypeError: The attributes(in_types/in_shapes/out_types/out_shapes) are inconsistent with Python function specifications. Supported Platforms: ``CPU`` Examples: >>> def func(x1, x2): ... return x1 + x2 >>> x1 = Tensor(np.array([1, 2, 3]).astype(np.float32)) >>> x2 = Tensor(np.array([1, 2, 3]).astype(np.float32)) >>> op = P.PyFunc(func, [x1.dtype, x2.dtype], [x1.shape, x2.shape], [x1.dtype], [x1.shape]) >>> output = op((x1, x2)) >>> print(output[0].asnumpy()) [2. 4. 6.] """ def __init__(self, fn, in_types, in_shapes, out_types, out_shapes, stateful=True): super(PyFunc, self).__init__(self.__class__.__name__) add_pyfunc(id(fn), fn) self.add_prim_attr('fn_id', id(fn)) self.add_prim_attr('in_types', in_types) self.add_prim_attr('in_shapes', in_shapes) self.add_prim_attr('out_types', out_types) self.add_prim_attr('out_shapes', out_shapes) validator.check_value_type("in_types", in_types, [list, tuple], self.name) validator.check_value_type("in_shapes", in_shapes, [list, tuple], self.name) validator.check("in_types length", len(in_types), "in_shapes length", len(in_shapes), Rel.EQ, self.name) validator.check_value_type("out_types", out_types, [list, tuple], self.name) validator.check_value_type("out_shapes", out_shapes, [list, tuple], self.name) validator.check("out_types length", len(out_types), "out_shapes length", len(out_shapes), Rel.EQ, self.name) self.add_prim_attr("side_effect_io", stateful) self.add_prim_attr("primitive_target", "CPU") fake_output = False single_scalar_output = False if not out_types: fake_output = True elif not out_shapes: single_scalar_output = True self.add_prim_attr("fake_output", fake_output) self.add_prim_attr("single_scalar_output", single_scalar_output) def infer_shape(self, *args): if self.out_shapes: return tuple(self.out_shapes) logger.warning("The function output are empty tuple. Add a placeholder instead. " "Do not use it as it could be any uninitialized data.") return ((1,),) def infer_dtype(self, *args): if self.out_shapes: return tuple(self.out_types) logger.warning("The function output are empty tuple. Add a placeholder instead. " "Do not use it as it could be any uninitialized data.") return (mstype.int32,) class BlackmanWindow(Primitive): r""" Blackman window function. The input "window_length" is a tensor that datatype must be a integer, which controlling the returned window size. In particular, If "window_length" =1, the returned window contains a single value 1. Attr "periodic" determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions. Therefore, if attr "periodic" is true, the "N" in formula is in fact "window_length" + 1. .. math:: w[n] = 0.42 - 0.5 cos(\frac{2\pi n}{N - 1}) + 0.08 cos(\frac{4\pi n}{N - 1}) \text{where : N is the full window size.} Args: periodic (bool): If True, returns a window to be used as periodic function. If False, return a symmetric window. Default: True. dtype (mindspore.dtype): the desired data type of returned tensor. Only float16, float32 and float64 is allowed. Default: mindspore.float32. Inputs: - **window_length** (Tensor) - the size of returned window, with data type int32, int64. The input data should be an integer with a value of [0, 1000000]. Outputs: A 1-D tensor of size "window_length" containing the window. Its datatype is set by the attr 'dtype' Raises: TypeError: If "window_length" is not a Tensor. TypeError: If "periodic" is not a bool. TypeError: If "dtype" is not one of: float16, float32, float64. TypeError: If the type of "window_length" is not one of: int32, int64. ValueError: If the value range of "window_length" is not [0,1000000]. ValueError: If the dimension of "window_length" is not 0. Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> window_length = Tensor(10, mindspore.int32) >>> blackman_window = ops.BlackmanWindow(periodic = True, dtype = mindspore.float32) >>> output = blackman_window(window_length) >>> print(output) [-2.9802322e-08 4.0212840e-02 2.0077014e-01 5.0978714e-01 8.4922993e-01 1.0000000e+00 8.4922981e-01 5.0978690e-01 2.0077008e-01 4.0212870e-02] """ @prim_attr_register def __init__(self, periodic=True, dtype=mstype.float32): """Initialize BlackmanWindow""" self.add_prim_attr("max_length", 1000000) validator.check_value_type("periodic", periodic, [bool], self.name) validator.check_value_type("dtype", dtype, [mstype.Type], self.name) valid_values = (mstype.float16, mstype.float32, mstype.float64) validator.check_type_name("dtype", dtype, valid_values, self.name)