# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Operators for nn."""
import math
from functools import partial
import numpy as np
from mindspore import log as logger
from mindspore._checkparam import _check_3d_int_or_tuple
from ... import context
from .. import signature as sig
from ..._checkparam import Validator as validator
from ..._checkparam import Rel
from ...common import dtype as mstype
from ...common._decorator import deprecated
from ..primitive import Primitive, PrimitiveWithInfer, PrimitiveWithCheck, prim_attr_register
def _check_positive_int_or_tuple(arg_name, arg_value, prim_name, allow_four=False, ret_four=False):
"""
Checks whether an argument is a positive int or tuple with 2 or 4(when allow_four is True) positive int elements.
"""
def _raise_message():
raise ValueError(f"For '{prim_name}' attr '{arg_name}' must be an positive int number or a tuple of two "
f"{'or four ' if allow_four else ''}positive int numbers, but got {arg_value}")
def _get_return_value():
if isinstance(arg_value, int):
ret = (1, 1, arg_value, arg_value) if ret_four else (arg_value, arg_value)
elif len(arg_value) == 2:
ret = (1, 1, arg_value[0], arg_value[1]) if ret_four else arg_value
elif len(arg_value) == 4:
if not allow_four:
_raise_message()
ret = arg_value if ret_four else (arg_value[2], arg_value[3])
else:
_raise_message()
return ret
validator.check_value_type(arg_name, arg_value, (int, tuple), prim_name)
ret_value = _get_return_value()
for item in ret_value:
if isinstance(item, int) and not isinstance(item, bool) and item > 0:
continue
_raise_message()
return ret_value
def _check_shape(arg_name, arg_value, prim_name):
"""
Checks whether an shape dims is a positive int elements.
"""
def _raise_message():
raise ValueError(f"For '{prim_name}' attr '{arg_name}' dims elements must be positive int numbers, "
f"but got {arg_value}")
validator.check_value_type(arg_name, arg_value, (list, tuple), prim_name)
for item in arg_value:
if isinstance(item, int) and item > 0:
continue
_raise_message()
return arg_value
def _update_attr_by_format(arg_value, arg_format):
"""
If the format is NHWC, should modify the strides or dilation shape.
"""
ret = arg_value
if len(arg_value) == 4 and arg_format == "NHWC":
ret = arg_value[1:] + (1,)
return ret
class CeLU(Primitive):
r"""
Computes CeLU (Continuously differentiable exponential linear units) of input tensors element-wise.
.. math::
\text{CeLU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))
It returns :math:`\max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))` element-wise.
The picture about CeLU looks like this `CeLU <https://arxiv.org/abs/1704.07483>`_.
Args:
alpha (float): The :math:`\alpha` value for the Celu formulation. Default: 1.0
Inputs:
- **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
additional dimensions, with dtype of float16 and float32.
Outputs:
Tensor, with the same type and shape as the `input_x`.
Raises:
TypeError: If `alpha` is not a float.
ValueError: If `alpha` has the value of 0.
TypeError: If `input_x` is not a Tensor.
TypeError: If the dtype of 'input_x' is neither float16 nor float32.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([-2.0, -1.0, 1.0, 2.0]), mindspore.float32)
>>> celu = ops.CeLU(alpha=1.0)
>>> output = celu(input_x)
>>> print(output)
[-0.86466473 -0.63212055 1. 2. ]
"""
@prim_attr_register
def __init__(self, alpha=1.0):
"""Initialize CeLU"""
validator.check_value_type("alpha", alpha, [float], self.name)
validator.check_float(alpha, 0.0, Rel.NE, "alpha", self.name)
self.alpha = alpha
self.add_prim_attr('alpha', self.alpha)
[docs]class Flatten(Primitive):
r"""
Flattens a tensor without changing its batch size on the 0-th axis.
Refer to :func:`mindspore.ops.flatten` for more details.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.ones(shape=[1, 2, 3, 4]), mindspore.float32)
>>> flatten = ops.Flatten()
>>> output = flatten(input_x)
>>> print(output.shape)
(1, 24)
"""
@prim_attr_register
def __init__(self):
pass
[docs]class AdaptiveAvgPool2D(PrimitiveWithInfer):
r"""
2D adaptive average pooling for temporal data.
Refer to :func:`mindspore.ops.adaptive_avg_pool2d` for more detail.
Supported Platforms:
``GPU``
Examples:
>>> # case 1: output_size=(None, 2)
>>> input_x = Tensor(np.array([[[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]],
... [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]],
... [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]]), mindspore.float32)
>>> adaptive_avg_pool_2d = ops.AdaptiveAvgPool2D((None, 2))
>>> output = adaptive_avg_pool_2d(input_x)
>>> print(output)
[[[[1.5 2.5]
[4.5 5.5]
[7.5 8.5]]
[[1.5 2.5]
[4.5 5.5]
[7.5 8.5]]
[[1.5 2.5]
[4.5 5.5]
[7.5 8.5]]]]
>>> # case 2: output_size=2
>>> adaptive_avg_pool_2d = ops.AdaptiveAvgPool2D(2)
>>> output = adaptive_avg_pool_2d(input_x)
>>> print(output)
[[[[3. 4.]
[6. 7.]]
[[3. 4.]
[6. 7.]]
[[3. 4.]
[6. 7.]]]]
>>> # case 3: output_size=(1, 2)
>>> adaptive_avg_pool_2d = ops.AdaptiveAvgPool2D((1, 2))
>>> output = adaptive_avg_pool_2d(input_x)
>>> print(output)
[[[[4.5 5.5]]
[[4.5 5.5]]
[[4.5 5.5]]]]
"""
@prim_attr_register
def __init__(self, output_size):
"""Initialize AdaptiveAvgPool2D."""
validator.check_value_type("output_size", output_size, [int, tuple], self.name)
if isinstance(output_size, tuple):
validator.check_int(len(output_size), 2, Rel.EQ, 'length of output_size', self.name)
self.output_size = (output_size, output_size) if isinstance(self.output_size, int) else output_size
def infer_shape(self, x_shape):
if len(x_shape) <= len(self.output_size):
raise ValueError("input_x {} dimension must be larger than output_size {} "
"dimension".format(x_shape, self.output_size))
validator.check_int(len(x_shape), 5, Rel.LT, 'input_x_dimensions', self.name)
for input_x_dimension in x_shape:
validator.check_int(input_x_dimension, 0, Rel.GT, 'input_x dimension', self.name)
zipped = zip(self.output_size, x_shape[-len(self.output_size):])
out_size = [i if i is not None else j for i, j in zipped]
for item in out_size:
validator.check_value_type("item of output_size", item, [int], self.name)
self.add_prim_attr('output_size', out_size)
output_shape = x_shape[:len(x_shape) - len(out_size)] + out_size
return output_shape
def infer_dtype(self, x_dtype):
validator.check_tensor_dtype_valid("x_dtype", x_dtype, [mstype.float16, mstype.float32, mstype.float64],
self.name)
return x_dtype
class AdaptiveMaxPool2D(Primitive):
r"""
AdaptiveMaxPool2D operation.
This operator applies a 2D adaptive max pooling to an input signal composed of multiple input planes.
That is, for any input size, the size of the specified output is H x W.
The number of output features is equal to the number of input planes.
The input and output data format can be "NCHW" and "CHW". N is the batch size, C is the number of channels,
H is the feature height, and W is the feature width.
For max adaptive pool2d:
.. math::
\begin{align}
h_{start} &= floor(i * H_{in} / H_{out})\\
h_{end} &= ceil((i + 1) * H_{in} / H_{out})\\
w_{start} &= floor(j * W_{in} / W_{out})\\
w_{end} &= ceil((j + 1) * W_{in} / W_{out})\\
Output(i,j) &= {\max Input[h_{start}:h_{end}, w_{start}:w_{end}]}
\end{align}
Note:
In Ascend, the second output `argmax` is invalid, please ignore it.
Args:
output_size (Union[int, tuple]): The target output size is H x W.
ouput_size can be a tuple, or a single H for H x H, and H and W can be int or None
which means the output size is the same as the input.
return_indices (bool): If `return_indices` is True, the indices of max value would be output.
Default: False.
Inputs:
- **input_x** (Tensor) - The input of AdaptiveMaxPool2D, which is a 3D or 4D tensor,
with float16, float32 or float64 data type.
Outputs:
Tensor, with the same type as the `input_x`.
Shape of the output is `input_x_shape[:len(input_x_shape) - len(out_shape)] + out_shape`.
Raises:
TypeError: If `output_size` is not int or tuple.
TypeError: If `input_x` is not a tensor.
TypeError: If `return_indices` is not a bool.
TypeError: If dtype of `input_x` is not float16, float32 or float64.
ValueError: If `output_size` is a tuple and the length of `output_size` is not 2.
ValueError: If the dimension of `input_x` is not NCHW or CHW.
ValueError: If `output_size` is less than -1.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> # case 1: output_size=(None, 2)
>>> input_x = Tensor(np.array([[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]],
... [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]],
... [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]), mindspore.float32)
>>> adaptive_max_pool_2d = ops.AdaptiveMaxPool2D((None, 2))
>>> output = adaptive_max_pool_2d(input_x)
>>> print(output)
[[[2. 3.]
[5. 6.]
[8. 9.]]
[[2. 3.]
[5. 6.]
[8. 9.]]
[[2. 3.]
[5. 6.]
[8. 9.]]]
>>> # case 2: output_size=2
>>> adaptive_max_pool_2d = ops.AdaptiveMaxPool2D(2)
>>> output = adaptive_max_pool_2d(input_x)
>>> print(output)
[[[5. 6.]
[8. 9.]]
[[5. 6.]
[8. 9.]]
[[5. 6.]
[8. 9.]]]
>>> # case 3: output_size=(1, 2)
>>> adaptive_max_pool_2d = ops.AdaptiveMaxPool2D((1, 2))
>>> output = adaptive_max_pool_2d(input_x)
>>> print(output)
[[[8. 9.]]
[[8. 9.]]
[[8. 9.]]]
"""
@prim_attr_register
def __init__(self, output_size, return_indices=False):
"""Initialize AdaptiveMaxPool2D."""
validator.check_value_type("output_size", output_size, [int, tuple], self.name)
validator.check_value_type("return_indices", return_indices, [bool], self.name)
if isinstance(output_size, tuple):
validator.check_int(len(output_size), 2, Rel.EQ,
'length of output_size', self.name)
self.output_size = (output_size, output_size) if isinstance(self.output_size, int) else output_size
self.output_size = (-1 if self.output_size[0] is None else self.output_size[0],
-1 if self.output_size[1] is None else self.output_size[1])
for size in self.output_size:
validator.check_number("output_size", size, -1, Rel.GE, None)
self.add_prim_attr('output_size', self.output_size)
self.add_prim_attr('return_indices', return_indices)
class AdaptiveMaxPool3D(Primitive):
r"""
Applies a 3D adaptive max pooling over an input signal composed of several input planes.
Refer to :func:`mindspore.ops.adaptive_max_pool3d` for more detail.
Supported Platforms:
``GPU``
Examples:
>>> # case 1: Dynamic output size
>>> class AdaptiveMaxPool3DNet(nn.Cell):
... def __init__(self):
... super(AdaptiveMaxPool3DNet, self).__init__()
... self.adaptive_max_pool_3d = ops.AdaptiveMaxPool3D()
... def construct(self, x_, output_size_):
... return self.adaptive_max_pool_3d(x_, output_size_)
>>> x = np.arange(0,36).reshape((1, 3, 3, 4)).astype(np.float32)
>>> output_size = np.array([1, 1, 2], dtype=np.int32)
>>> net = AdaptiveMaxPool3DNet()
>>> output = net(Tensor(x), Tensor(output_size))
>>> print(output[0].asnumpy())
[[[[33. 35.]]]]
>>> print(output[1].asnumpy())
[[[[33 35]]]]
>>> # case 2: Constant output size
>>> class ConstAdaptiveMaxPool3DNet(nn.Cell):
... def __init__(self, output_size):
... super(ConstAdaptiveMaxPool3DNet, self).__init__()
... self.output_size_ = output_size
... self.adaptive_max_pool_3d = ops.AdaptiveMaxPool3D()
... def construct(self, x_):
... return self.adaptive_max_pool_3d(x_, self.output_size_)
>>> x = np.arange(0,36).reshape((1, 3, 3, 4)).astype(np.float32)
>>> output_size = np.array([1, 1, 2], dtype=np.int32)
>>> net = ConstAdaptiveMaxPool3DNet(Tensor(output_size))
>>> output = net(Tensor(x))
>>> print(output[0].asnumpy())
[[[[33. 35.]]]]
>>> print(output[1].asnumpy())
[[[[33 35]]]]
"""
@prim_attr_register
def __init__(self):
self.init_prim_io_names(inputs=['x', 'output_size'], outputs=['y', 'argmax'])
[docs]class Softmax(Primitive):
r"""
Softmax operation.
Applies the Softmax operation to the input tensor on the specified axis.
Suppose a slice in the given axis :math:`x`, then for each element :math:`x_i`,
the Softmax function is shown as follows:
.. math::
\text{output}(x_i) = \frac{exp(x_i)}{\sum_{j = 0}^{N-1}\exp(x_j)},
where :math:`N` is the length of the tensor.
Args:
axis (Union[int, tuple]): The axis to perform the Softmax operation. Default: -1.
Inputs:
- **logits** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
additional dimensions, with float16 or float32 data type.
Outputs:
Tensor, with the same type and shape as the logits.
Raises:
TypeError: If `axis` is neither an int nor a tuple.
TypeError: If dtype of `logits` is neither float16 nor float32.
ValueError: If `axis` is a tuple whose length is less than 1.
ValueError: If `axis` is a tuple whose elements are not all in range [-len(logits.shape), len(logits.shape)).
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> logits = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
>>> softmax = ops.Softmax()
>>> output = softmax(logits)
>>> print(output)
[0.01165623 0.03168492 0.08612854 0.23412167 0.6364086 ]
"""
@prim_attr_register
def __init__(self, axis=-1):
"""Initialize Softmax."""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
validator.check_value_type("axis", axis, [int, tuple], self.name)
if isinstance(axis, int):
self.add_prim_attr('axis', (axis,))
for item in self.axis:
validator.check_value_type("item of axis", item, [int], self.name)
[docs]class LogSoftmax(Primitive):
r"""
Log Softmax activation function.
Refer to :func:`mindspore.ops.log_softmax` for more detail.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> logits = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
>>> log_softmax = ops.LogSoftmax()
>>> output = log_softmax(logits)
>>> print(output)
[-4.4519143 -3.4519143 -2.4519143 -1.4519144 -0.4519144]
"""
@prim_attr_register
def __init__(self, axis=-1):
"""Initialize LogSoftmax."""
validator.check_value_type("axis", axis, [int], self.name)
[docs]class Softplus(Primitive):
r"""
Softplus activation function.
Softplus is a smooth approximation to the ReLU function.
It can be used to constrain the output of a machine to always be positive.
The function is shown as follows:
.. math::
\text{output} = \log(1 + \exp(\text{x})),
Inputs:
- **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
additional dimensions, with float16 or float32 data type.
Outputs:
Tensor, with the same type and shape as the `input_x`.
Raises:
TypeError: If `input_x` is not a Tensor.
TypeError: If the dtype of `input_x` is neither float16 nor float32.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
>>> softplus = ops.Softplus()
>>> output = softplus(input_x)
>>> print(output)
[1.3132615 2.126928 3.0485873 4.01815 5.0067153]
"""
@prim_attr_register
def __init__(self):
"""Initialize Softplus"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
[docs]class Softsign(Primitive):
r"""
Softsign activation function.
Refer to :func:`mindspore.ops.softsign` for more details.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> from mindspore.ops.operations.nn_ops import Softsign
>>> input_x = Tensor(np.array([0, -1, 2, 30, -30]), mindspore.float32)
>>> softsign = Softsign()
>>> output = softsign(input_x)
>>> print(output)
[ 0. -0.5 0.6666667 0.9677419 -0.9677419]
"""
@prim_attr_register
def __init__(self):
"""Initialize Softsign"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
[docs]class ReLU(Primitive):
r"""
Computes ReLU (Rectified Linear Unit activation function) of input tensors element-wise.
It returns max(x, 0) element-wise. Specially, the neurons with the negative output
will be suppressed and the active neurons will stay the same.
.. math::
ReLU(x) = (x)^+ = max(0, x)
Note:
In general, this operator is more commonly used. The difference from `ReLuV2` is that the `ReLuV2` will
output one more Mask.
Inputs:
- **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
additional dimensions, data type is
`number <https://www.mindspore.cn/docs/en/r1.8/api_python/mindspore.html#mindspore.dtype>`_.
Outputs:
Tensor of shape :math:`(N, *)`, with the same type and shape as the `input_x`.
Raises:
TypeError: If dtype of `input_x` is not a number.
TypeError: If `input_x` is not a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> relu = ops.ReLU()
>>> output = relu(input_x)
>>> print(output)
[[0. 4. 0.]
[2. 0. 9.]]
"""
@prim_attr_register
def __init__(self):
"""Initialize ReLU"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
class ReLUV3(Primitive):
r"""
Computes ReLUV3 (Rectified Linear Unit activation function) of input tensors element-wise.
It returns max(x, 0) element-wise. Specially, the neurons with the negative output
will be suppressed and the active neurons will stay the same.
.. math::
ReLUV3(x) = (x)^+ = max(0, x)
Inputs:
- **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
additional dimensions, data type is
`number <https://www.mindspore.cn/docs/en/r1.8/api_python/mindspore.html#mindspore.dtype>`_.
Outputs:
Tensor of shape :math:`(N, *)`, with the same type and shape as the `input_x`.
Raises:
TypeError: If `input_x` is not a Tensor.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> relu_v3 = ops.ReLUV3()
>>> output = relu_v3(input_x)
>>> print(output)
[[0. 4. 0.]
[2. 0. 9.]]
"""
@prim_attr_register
def __init__(self):
"""Initialize ReLUV3"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
[docs]class Mish(PrimitiveWithInfer):
r"""
Computes MISH(A Self Regularized Non-Monotonic Neural Activation Function) of input tensors element-wise.
The function is shown as follows:
.. math::
\text{output} = x * \tanh(\log(1 + \exp(\text{x})))
See more details in `A Self Regularized Non-Monotonic Neural Activation Function
<https://arxiv.org/abs/1908.08681>`_.
Inputs:
- **x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
additional dimensions, with float16 or float32 data type.
Outputs:
Tensor, with the same type and shape as the `x`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Raises:
TypeError: If dtype of `x` is neither float16 nor float32.
Examples:
>>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> mish = ops.Mish()
>>> output = mish(x)
>>> print(output)
[[-0.3034014 3.9974129 -0.00026832]
[ 1.9439590 -0.0033576 9.0000000]]
"""
@prim_attr_register
def __init__(self):
"""Initialize Mish"""
super().__init__("Mish")
self.init_prim_io_names(inputs=['x'], outputs=['output'])
[docs]class SeLU(Primitive):
r"""
Activation function SeLU (Scaled exponential Linear Unit).
The activation function is defined as:
.. math::
E_{i} =
scale *
\begin{cases}
x_{i}, &\text{if } x_{i} \geq 0; \cr
\text{alpha} * (\exp(x_i) - 1), &\text{otherwise.}
\end{cases}
where :math:`alpha` and :math:`scale` are pre-defined constants(:math:`alpha=1.67326324`
and :math:`scale=1.05070098`).
See more details in `Self-Normalizing Neural Networks <https://arxiv.org/abs/1706.02515>`_.
Inputs:
- **input_x** (Tensor) - Tensor of any dimension.
The data type is int8, int32, float16, float32, float64(only CPU, GPU).
Outputs:
Tensor, with the same type and shape as the `input_x`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Raises:
TypeError: If dtype of `input_x` is not int8, int32, float16, float32, float64.
Examples:
>>> from mindspore.ops.operations.nn_ops import SeLU
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> selu = SeLU()
>>> output = selu(input_x)
>>> print(output)
[[-1.1113307 4.202804 -1.7575096]
[ 2.101402 -1.7462534 9.456309 ]]
"""
@prim_attr_register
def __init__(self):
"""Initialize SeLU"""
super().__init__("SeLU")
self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
[docs]class ReLU6(PrimitiveWithCheck):
r"""
Computes ReLU (Rectified Linear Unit) upper bounded by 6 of input tensors element-wise.
.. math::
\text{ReLU6}(x) = \min(\max(0,x), 6)
It returns :math:`\min(\max(0,x), 6)` element-wise.
Inputs:
- **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
additional dimensions, with float16 or float32 data type.
Outputs:
Tensor, with the same type and shape as the `input_x`.
Raises:
TypeError: If dtype of `input_x` is neither float16 nor float32.
TypeError: If `input_x` is not a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> relu6 = ops.ReLU6()
>>> result = relu6(input_x)
>>> print(result)
[[0. 4. 0.]
[2. 0. 6.]]
"""
@prim_attr_register
def __init__(self):
"""Initialize ReLU6"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def check_shape(self, input_x):
pass
def check_dtype(self, input_x):
validator.check_tensor_dtype_valid('input_x', input_x, (mstype.float16, mstype.float32), self.name)
[docs]class ReLUV2(Primitive):
r"""
The ReLUV2 interface is deprecated, please use the :class:`mindspore.ops.ReLU` instead.
Rectified Linear Unit activation function.
It returns element-wise :math:`\max(0, x)`, specially, the neurons with the negative output
will be suppressed and the active neurons will stay the same.
.. math::
\text{ReLU}(x) = (x)^+ = \max(0, x)
Inputs:
- **input_x** (Tensor) - The input tensor must be a 4-D tensor.
Outputs:
- **output** (Tensor) - Has the same type and shape as the `input_x`.
- **mask** (Tensor) - A tensor, but it is meaningless.
Raises:
TypeError: If `input_x` is not a Tensor.
ValueError: If shape of `input_x` is not 4-D.
Supported Platforms:
deprecated
Examples:
>>> input_x = Tensor(np.array([[[[1, -2], [-3, 4]], [[-5, 6], [7, -8]]]]), mindspore.float32)
>>> relu_v2 = ops.ReLUV2()
>>> output, _= relu_v2(input_x)
>>> print(output)
[[[[1. 0.]
[0. 4.]]
[[0. 6.]
[7. 0.]]]]
"""
@prim_attr_register
def __init__(self):
"""Initialize ReLUV2"""
self.init_prim_io_names(inputs=['x'], outputs=['output', 'mask'])
[docs]class Elu(Primitive):
r"""
Exponential Linear Uint activation function.
Applies the exponential linear unit function element-wise.
The activation function is defined as:
.. math::
\text{ELU}(x)= \left\{
\begin{array}{align}
\alpha(e^{x} - 1) & \text{if } x \le 0\\
x & \text{if } x \gt 0\\
\end{array}\right.
The picture about ELU looks like this `ELU <https://en.wikipedia.org/wiki/
Activation_function#/media/File:Activation_elu.svg>`_ .
Args:
alpha (float): The alpha value of ELU, the data type is float. Only support '1.0' currently. Default: 1.0.
Inputs:
- **input_x** (Tensor) - The input of ELU is a Tensor of any dimension with data type of float16 or float32.
Outputs:
Tensor, has the same shape and data type as `input_x`.
Raises:
TypeError: If `alpha` is not a float.
TypeError: If dtype of `input_x` is neither float16 nor float32.
ValueError: If `alpha` is not equal to 1.0.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> elu = ops.Elu()
>>> output = elu(input_x)
>>> print(output)
[[-0.63212055 4. -0.99966455]
[ 2. -0.99326205 9. ]]
"""
@prim_attr_register
def __init__(self, alpha=1.0):
"""Initialize Elu"""
validator.check_value_type("alpha", alpha, [float], self.name)
validator.check_number("alpha", alpha, 1.0, Rel.EQ, self.name)
self.init_prim_io_names(inputs=['x'], outputs=['output', 'mask'])
[docs]class HSwish(Primitive):
r"""
Hard swish activation function.
Refer to :func:`mindspore.ops.hardswish` for more detail.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> hswish = ops.HSwish()
>>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
>>> result = hswish(input_x)
>>> print(result)
[-0.3333 -0.3333 0 1.666 0.6665]
"""
@prim_attr_register
def __init__(self):
"""Initialize HSwish."""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
[docs]class Sigmoid(Primitive):
r"""
Sigmoid activation function.
Computes Sigmoid of input element-wise. The Sigmoid function is defined as:
.. math::
\text{sigmoid}(x_i) = \frac{1}{1 + \exp(-x_i)}
where :math:`x_i` is an element of the input Tensor.
Inputs:
- **input_x** (Tensor) - Tensor of any dimension, the data type is float16 or float32.
Outputs:
Tensor, with the same type and shape as the input_x.
Raises:
TypeError: If dtype of `input_x` is neither float16 nor float32.
TypeError: If `input_x` is not a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
>>> sigmoid = ops.Sigmoid()
>>> output = sigmoid(input_x)
>>> print(output)
[0.7310586 0.880797 0.95257413 0.98201376 0.9933072 ]
"""
@prim_attr_register
def __init__(self):
"""Initialize Sigmoid."""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
[docs]class HSigmoid(Primitive):
r"""
Hard sigmoid activation function.
Applies hard sigmoid activation element-wise. The input is a Tensor with any valid shape.
Hard sigmoid is defined as:
.. math::
\text{hsigmoid}(x_{i}) = max(0, min(1, \frac{x_{i} + 3}{6})),
where :math:`x_i` is an element of the input Tensor.
Inputs:
- **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
additional dimensions.
Outputs:
Tensor, with the same type and shape as the `input_x`.
Raises:
TypeError: If `input_x` is not a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> hsigmoid = ops.HSigmoid()
>>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
>>> result = hsigmoid(input_x)
>>> print(result)
[0.3333 0.1666 0.5 0.8335 0.6665]
"""
@prim_attr_register
def __init__(self):
"""Initialize HSigmoid."""
self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
[docs]class Tanh(Primitive):
r"""
Tanh activation function.
Computes hyperbolic tangent of input element-wise.
Refer to :func:`mindspore.ops.tanh` for more detail.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
>>> tanh = ops.Tanh()
>>> output = tanh(input_x)
>>> print(output)
[0.7615941 0.9640276 0.9950547 0.9993293 0.9999092]
"""
@prim_attr_register
def __init__(self):
"""Initialize Tanh"""
self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
class FusedBatchNorm(Primitive):
r"""
The FusedBatchNorm interface is deprecated, please use the BatchNorm interface.
"""
def __init__(self, mode=0, epsilon=1e-5, momentum=0.1):
raise TypeError("The FusedBatchNorm interface is deprecated, please use the BatchNorm interface.")
class FusedBatchNormEx(PrimitiveWithCheck):
r"""
The FusedBatchNormEx interface is deprecated, please use the BatchNorm interface.
"""
def __init__(self, mode=0, epsilon=1e-5, momentum=0.1, data_format="NCHW"):
raise TypeError("FusedBatchnormEx interface is deprecated, please use BatchNorm interface.")
class InstanceNorm(PrimitiveWithInfer):
r"""
Instance Normalization over a 4D input.
This operator applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with
additional channel dimension) as described in the paper `Instance Normalization: The Missing Ingredient for
Fast Stylization <https://arxiv.org/abs/1607.08022>`_. It rescales and recenters the feature using a mini-batch
of data and the learned parameters which can be described in the following formula.
.. math::
y = \frac{x - mean}{\sqrt{variance + \epsilon}} * \gamma + \beta
where :math:`\gamma` is scale, :math:`\beta` is bias, :math:`\epsilon` is epsilon.
Args:
epsilon (float): A small value added for numerical stability. Default: 1e-5.
momentum (float): The hyper parameter to compute moving average for running_mean and running_var
(e.g. :math:`new\_running\_mean = momentum * running\_mean + (1 - momentum) * current\_mean`).
Momentum value must be [0, 1]. Default: 0.1.
Inputs:
- **input_x** (Tensor) - The input of InstanceNorm, Tensor of shape :math:`(N, C)`,
data type: float16 or float32.
- **gamma** (Parameter) - Scale, Tensor of shape :math:`(C,)`,
data type: float32.
- **beta** (Parameter) - Bias, Tensor of shape :math:`(C,)`,
data type: float32.
- **mean** (Parameter) - Mean value, Tensor of shape :math:`(C,)`, data type: float32.
- **variance** (Parameter) - Variance value, Tensor of shape :math:`(C,)`, data type: float32.
Outputs:
Tuple of 3 Tensors, the normalized input, the updated parameters.
- **output_x** (Tensor) - The output of InstanceNorm, same type and shape as the `input_x`.
- **updated_moving_mean** (Tensor) - Updated mean value, Tensor of shape :math:`(NC,)`, data type: float32.
- **updated_moving_variance** (Tensor) - Updated variance value, Tensor of shape :math:`(NC,)`,
data type: float32.
Supported Platforms:
``GPU``
Raises:
TypeError: If `epsilon` or `momentum` is not a float.
TypeError: If dtype of `input_x` is neither float16 nor float32.
TypeError: If dtype of `gamma`, `beta` or `mean` is not float32.
ValueError: If `epsilon` is not in the range of [0, 1).
ValueError: If `momentum` is not in the range of [0, 1].
Examples:
>>> class InstanceNormNet(nn.Cell):
>>> def __init__(self):
>>> super(InstanceNormNet, self).__init__()
>>> self.instance_norm = ops.InstanceNorm()
>>> self.gamma = Parameter(Tensor(np.ones([64]), mindspore.float32), name="gamma")
>>> self.beta = Parameter(Tensor(np.ones([64]), mindspore.float32), name="beta")
>>> self.mean = Parameter(Tensor(np.ones([64]), mindspore.float32), name="mean")
>>> self.variance = Parameter(Tensor(np.ones([64]), mindspore.float32), name="variance")
>>>
>>> def construct(self, input_x):
>>> out = self.instance_norm(input_x, self.gamma, self.beta, self.mean, self.variance)
>>> return out
>>>
>>> input_x = Tensor(np.ones([128, 64, 32, 64]), mindspore.float32)
>>> net = InstanceNormNet()
>>> output = net(input_x)
>>> result = output[0].shape
>>> print(result)
(128, 64, 32, 64)
"""
__mindspore_signature__ = (
sig.make_sig('input_x', dtype=sig.sig_dtype.T2),
sig.make_sig('gamma', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('beta', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('mean', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('variance', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
)
@prim_attr_register
def __init__(self, epsilon=1e-5, momentum=0.1):
"""Initialize InstanceNorm."""
self.init_prim_io_names(inputs=['x', 'gamma', 'beta', 'mean', 'variance'],
outputs=['y', 'save_mean', 'save_variance'])
self.epsilon = validator.check_float_range(epsilon, 0, 1, Rel.INC_RIGHT, 'epsilon', self.name)
self.momentum = validator.check_float_range(momentum, 0, 1, Rel.INC_BOTH, 'momentum', self.name)
self._update_parameter = True
self.add_prim_attr('side_effect_mem', True)
class BNTrainingReduce(Primitive):
"""
The BNTrainingReduce interface is deprecated, please use the :class:`mindspore.ops.BatchNorm` instead.
Supported Platforms:
Deprecated
"""
@deprecated("1.5", "ops.BatchNorm", False)
@prim_attr_register
def __init__(self, data_format="NCHW"):
"""Initialize BNTrainingReduce."""
self.init_prim_io_names(inputs=['x'], outputs=['sum', 'square_sum'])
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, "
f"but got the 'data_format' is {self.format} and "
f"the platform is {context.get_context('device_target')}.")
self.add_prim_attr('data_format', self.format)
class BNTrainingUpdate(Primitive):
"""
The BNTrainingUpdate interface is deprecated, please use the :class:`mindspore.ops.BatchNorm` instead.
Supported Platforms:
Deprecated
"""
@deprecated("1.5", "ops.BatchNorm", False)
@prim_attr_register
def __init__(self, isRef=True, epsilon=1e-5, factor=0.1, data_format="NCHW"):
"""Initialize BNTrainingUpdate."""
self.init_prim_io_names(inputs=['x', 'sum', 'square_sum', 'scale', 'b', 'mean', 'variance'],
outputs=['y', 'running_mean', 'running_variance', 'save_mean', 'save_inv_variance'])
validator.check_value_type("isRef", isRef, [bool], self.name)
validator.check_value_type("epsilon", epsilon, [float], self.name)
validator.check_value_type("factor", factor, [float], self.name)
self.epsilon = validator.check_float_range(epsilon, 0, 1, Rel.INC_RIGHT, 'epsilon', 'BNTrainingUpdate')
self.factor = validator.check_float_range(factor, 0, 1, Rel.INC_BOTH, 'factor', 'BNTrainingUpdate')
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, "
f"but got the 'data_format' is {self.format} and "
f"the platform is {context.get_context('device_target')}.")
self.add_prim_attr('data_format', self.format)
[docs]class BatchNorm(PrimitiveWithInfer):
r"""
Batch Normalization for input data and updated parameters.
Batch Normalization is widely used in convolutional neural networks. This operation
applies Batch Normalization over inputs to avoid internal covariate shift as described
in the paper `Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift <https://arxiv.org/abs/1502.03167>`_. It rescales and recenters the
features using a mini-batch of data and the learned parameters can be described
in the following formula,
.. math::
y = \frac{x - mean}{\sqrt{variance + \epsilon}} * \gamma + \beta
where :math:`\gamma` is scale, :math:`\beta` is bias, :math:`\epsilon` is epsilon, :math:`mean` is the mean of x,
:math:`variance` is the variance of x.
.. warning::
- If the operation is used for inference, and outputs "reserve_space_1" and "reserve_space_2" are available,
then "reserve_space_1" has the same value as "mean" and "reserve_space_2" has the same value as "variance".
- For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction.
Args:
is_training (bool): If `is_training` is True, `mean` and `variance` are computed during training.
If `is_training` is False, they're loaded from checkpoint during inference. Default: False.
epsilon (float): A small value added for numerical stability. Default: 1e-5.
momentum (float): The hyper parameter to compute moving average for running_mean and running_var
(e.g. :math:`new\_running\_mean = (1 - momentum) * running\_mean + momentum * current\_mean`).
Momentum value must be [0, 1]. Default: 0.1.
data_format (str): The optional value for data format, is 'NHWC' or 'NCHW'.
Default: "NCHW".
Inputs:
If `is_training` is False, inputs are Tensors.
- **input_x** (Tensor) - Tensor of shape :math:`(N, C)`, with float16 or float32 data type.
- **scale** (Tensor) - Tensor of shape :math:`(C,)`, with float16 or float32 data type.
- **bias** (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `scale`.
- **mean** (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `scale`.
- **variance** (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `scale`.
If `is_training` is True, `scale`, `bias`, `mean` and `variance` are Parameters.
- **input_x** (Tensor) - Tensor of shape :math:`(N, C)`, with float16 or float32 data type.
- **scale** (Parameter) - Parameter of shape :math:`(C,)`, with float16 or float32 data type.
- **bias** (Parameter) - Parameter of shape :math:`(C,)`, has the same data type with `scale`.
- **mean** (Parameter) - Parameter of shape :math:`(C,)`, has the same data type with `scale`.
- **variance** (Parameter) - Parameter of shape :math:`(C,)`, has the same data type with `scale`.
Outputs:
Tuple of 5 Tensors, the normalized inputs and the updated parameters.
- **output_x** (Tensor) - The same type and shape as the input_x. The shape is :math:`(N, C)`.
- **batch_mean** (Tensor) - Tensor of shape :math:`(C,)`.
- **batch_variance** (Tensor) - Tensor of shape :math:`(C,)`.
- **reserve_space_1** (Tensor) - Tensor of shape :math:`(C,)`.
- **reserve_space_2** (Tensor) - Tensor of shape :math:`(C,)`.
Raises:
TypeError: If `is_training` is not a bool.
TypeError: If dtype of `epsilon` or `momentum` is not float.
TypeError: If `data_format` is not a str.
TypeError: If `input_x`, `scale`, `bias`, `mean` or `variance` is not a Tensor.
TypeError: If dtype of `input_x`, `scale` is neither float16 nor float32.
Supported Platforms:
``Ascend`` ``CPU`` ``GPU``
Examples:
>>> input_x = Tensor(np.ones([2, 2]), mindspore.float32)
>>> scale = Tensor(np.ones([2]), mindspore.float32)
>>> bias = Tensor(np.ones([2]), mindspore.float32)
>>> mean = Tensor(np.ones([2]), mindspore.float32)
>>> variance = Tensor(np.ones([2]), mindspore.float32)
>>> batch_norm = ops.BatchNorm()
>>> output = batch_norm(input_x, scale, bias, mean, variance)
>>> print(output[0])
[[1. 1.]
[1. 1.]]
"""
__mindspore_signature__ = (
sig.make_sig('input_x', dtype=sig.sig_dtype.T1),
sig.make_sig('scale', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T2),
sig.make_sig('bias', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T2),
sig.make_sig('mean', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T3),
sig.make_sig('variance', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T3)
)
@prim_attr_register
def __init__(self, is_training=False, epsilon=1e-5, momentum=0.1, data_format="NCHW"):
"""Initialize BatchNorm."""
if is_training is False:
self.set_signatures(tuple())
else:
self.add_prim_attr('side_effect_mem', True)
validator.check_value_type('is_training', is_training, (bool,), self.name)
validator.check_float_range(epsilon, 0, 1, Rel.INC_RIGHT, 'epsilon', self.name)
validator.check_float_range(momentum, 0, 1, Rel.INC_BOTH, 'momentum', self.name)
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, "
f"but got the 'data_format' is {self.format} and "
f"the platform is {context.get_context('device_target')}.")
self.add_prim_attr('data_format', self.format)
self.init_prim_io_names(inputs=['x', 'scale', 'offset', 'mean', 'variance'],
outputs=['y', 'batch_mean', 'batch_variance', 'reserve_space_1', 'reserve_space_2'])
def infer_shape(self, input_x, scale, bias, mean, variance):
input_x_channel = input_x[-1] if self.format == "NHWC" else input_x[1]
validator.check_equal_int(len(scale), 1, "scale rank", self.name)
validator.check("scale shape", scale, "bias shape", bias, Rel.EQ, self.name)
validator.check("scale shape[0]", scale[0], "input_x channel", input_x_channel, Rel.EQ, self.name)
if not self.is_training:
validator.check_equal_int(len(mean), 1, "mean rank", self.name)
validator.check("mean shape", mean, "variance shape", variance, Rel.EQ, self.name)
validator.check("mean shape", mean, "scale shape", scale, Rel.EQ, self.name)
return input_x, scale, scale, scale, scale
def infer_dtype(self, input_x, scale, bias, mean, variance):
validator.check_tensor_dtype_valid("input_x", input_x, [mstype.float16, mstype.float32], self.name)
args = {"scale": scale, "bias": bias, "mean": mean, "variance": variance}
validator.check_tensors_dtypes_same_and_valid(args, [mstype.float16, mstype.float32], self.name)
return input_x, mstype.float32, mstype.float32, mstype.float32, mstype.float32
[docs]class Conv2D(Primitive):
r"""
2D convolution layer.
Applies a 2D convolution over an input tensor which is typically of shape :math:`(N, C_{in}, H_{in}, W_{in})`,
where :math:`N` is batch size, :math:`C` is channel number, :math:`H` is height, :math:`W` is width, :math:`X_i` is
the :math:`i^{th}` input value and :math:`b_i` indicates the deviation value of the :math:`i^{th}` input value.
For each batch of shape :math:`(C_{in}, H_{in}, W_{in})`, the formula is defined as:
.. math::
out_j = \sum_{i=0}^{C_{in} - 1} ccor(W_{ij}, X_i) + b_j,
where :math:`ccor` is the cross correlation operator, :math:`C_{in}` is the input channel number, :math:`j` ranges
from :math:`0` to :math:`C_{out} - 1`, :math:`W_{ij}` corresponds to the :math:`i`-th channel of the :math:`j`-th
filter and :math:`out_{j}` corresponds to the :math:`j`-th channel of the output. :math:`W_{ij}` is a slice
of kernel and it has shape :math:`(\text{kernel_size[0]}, \text{kernel_size[1]})`,
where :math:`\text{kernel_size[0]}` and :math:`\text{kernel_size[1]}` are the height and width of the
convolution kernel. The full kernel has shape
:math:`(C_{out}, C_{in} / \text{group}, \text{kernel_size[0]}, \text{kernel_size[1]})`,
where group is the group number to split the input in the channel dimension.
If the 'pad_mode' is set to be "pad", the output height and width will be
:math:`\left \lfloor{1 + \frac{H_{in} + \text{padding[0]} + \text{padding[1]} - \text{kernel_size[0]} -
(\text{kernel_size[0]} - 1) \times (\text{dilation[0]} - 1) }{\text{stride[0]}}} \right \rfloor` and
:math:`\left \lfloor{1 + \frac{W_{in} + \text{padding[2]} + \text{padding[3]} - \text{kernel_size[1]} -
(\text{kernel_size[1]} - 1) \times (\text{dilation[1]} - 1) }{\text{stride[1]}}} \right \rfloor` respectively.
Where :math:`dilation` is Spacing between kernel elements, :math:`stride` is The step length of each step,
:math:`padding` is zero-padding added to both sides of the input.
The first introduction can be found in paper `Gradient Based Learning Applied to Document Recognition
<http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_. More detailed introduction can be found here:
http://cs231n.github.io/convolutional-networks/.
Args:
out_channel (int): The number of output channel :math:`C_{out}`.
kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 2 integers. Specifies the height
and width of the 2D convolution window. Single int means the value is for both the height and the width of
the kernel. A tuple of 2 ints means the first value is for the height and the other is for the
width of the kernel.
mode (int): Modes for different convolutions. The value is currently not used. Default: 1.
pad_mode (str): Specifies padding mode. The optional values are
"same", "valid" and "pad". Default: "valid".
- same: Adopts the way of completion. The height and width of the output will be equal to
the input `x` divided by stride. The padding will be evenly calculated in top and bottom,
left and right possiblily.
Otherwise, the last extra padding will be calculated from the bottom and the right side.
If this mode is set, `pad` must be 0.
- valid: Adopts the way of discarding. The possible largest height and width of output will be returned
without padding. Extra pixels will be discarded. If this mode is set, `pad` must be 0.
- pad: Implicit paddings on both sides of the input `x`. The number of `pad` will be padded to the input
Tensor borders. `pad` must be greater than or equal to 0.
pad (Union(int, tuple[int])): Implicit paddings on both sides of the input `x`. If `pad` is one integer,
the paddings of top, bottom, left and right are the same, equal to pad. If `pad` is a tuple
with four integers, the paddings of top, bottom, left and right will be equal to pad[0],
pad[1], pad[2], and pad[3] accordingly. Default: 0.
stride (Union(int, tuple[int])): The distance of kernel moving, an int number that represents
the height and width of movement are both strides, or a tuple of two int numbers that
represent height and width of movement respectively. Default: 1.
dilation (Union(int, tuple[int])): The data type is int or a tuple of 2 integers. Specifies the dilation rate
to use for dilated convolution. If set to be :math:`k > 1`, there will
be :math:`k - 1` pixels skipped for each sampling location. Its value must
be greater than or equal to 1 and bounded by the height and width of the
input `x`. Default: 1.
group (int): Splits input into groups. Default: 1.
data_format (str): The optional value for data format, is 'NHWC' or 'NCHW'. Default: "NCHW".
Inputs:
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
- **weight** (Tensor) - Set size of kernel is :math:`(\text{kernel_size[0]}, \text{kernel_size[1]})`,
then the shape is :math:`(C_{out}, C_{in}, \text{kernel_size[0]}, \text{kernel_size[1]})`.
Outputs:
Tensor, the value that applied 2D convolution. The shape is :math:`(N, C_{out}, H_{out}, W_{out})`.
Raises:
TypeError: If `kernel_size`, `stride`, `pad` or `dilation` is neither an int nor a tuple.
TypeError: If `out_channel` or `group` is not an int.
ValueError: If `kernel_size`, `stride` or `dilation` is less than 1.
ValueError: If `pad_mode` is not one of 'same', 'valid' or 'pad'.
ValueError: If `pad` is a tuple whose length is not equal to 4.
ValueError: If `pad_mode` it not equal to 'pad' and `pad` is not equal to (0, 0, 0, 0).
ValueError: If `data_format` is neither 'NCHW' nor 'NHWC'.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> x = Tensor(np.ones([10, 32, 32, 32]), mindspore.float32)
>>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32)
>>> conv2d = ops.Conv2D(out_channel=32, kernel_size=3)
>>> output = conv2d(x, weight)
>>> print(output.shape)
(10, 32, 30, 30)
"""
@prim_attr_register
def __init__(self,
out_channel,
kernel_size,
mode=1,
pad_mode="valid",
pad=0,
stride=1,
dilation=1,
group=1,
data_format="NCHW"):
"""Initialize Conv2D"""
self.init_prim_io_names(inputs=['x', 'w'], outputs=['output'])
self.kernel_size = _check_positive_int_or_tuple('kernel_size', kernel_size, self.name)
self.stride = _check_positive_int_or_tuple('stride', stride, self.name, allow_four=True, ret_four=True)
self.add_prim_attr('stride', self.stride)
self.dilation = _check_positive_int_or_tuple('dilation', dilation, self.name, allow_four=True, ret_four=True)
self.add_prim_attr('dilation', self.dilation)
validator.check_value_type('pad', pad, (int, tuple), self.name)
validator.check_value_type('pad_mode', pad_mode, [str], self.name)
if isinstance(pad, int):
pad = (pad,) * 4
else:
validator.check_equal_int(len(pad), 4, 'pad size', self.name)
self.pad_mode = validator.check_string(pad_mode, ['valid', 'same', 'pad'], 'pad_mode', self.name)
if pad_mode != 'pad' and pad != (0, 0, 0, 0):
raise ValueError(f"For '{self.name}', the 'pad' must be zero when 'pad_mode' is not 'pad', "
f"but got 'pad': {self.pad} and 'pad_mode': {self.pad_mode}.")
self.add_prim_attr("pad", pad)
self.padding = pad
if self.pad_mode == 'pad':
for item in pad:
validator.check_non_negative_int(item, 'pad item', self.name)
self.mode = validator.check_equal_int(mode, 1, 'mode', self.name)
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, "
f"but got the 'data_format' is {self.format} "
f"and platform is {context.get_context('device_target')}.")
self.add_prim_attr('data_format', self.format)
self.out_channel = validator.check_positive_int(out_channel, 'out_channel', self.name)
self.group = validator.check_positive_int(group, 'group', self.name)
self.add_prim_attr('groups', self.group)
class DataFormatVecPermute(Primitive):
r"""
Permute input tensor from src_format to dst_format.
Args:
src_format (str): An optional value for source data format. The format can be 'NHWC' and 'NCHW'.
Default: 'NHWC'.
dst_format (str): An optional value for destination data format. The format can be 'NHWC' and 'NCHW'.
Default: 'NCHW'.
Inputs:
- **input_x** (Tensor) - A Tensor of shape (4, ) or (4, 2) in source data format. Only supports int32 and int64.
Outputs:
Tensor, has the same data type and shape as the `input_x`.
Raises:
TypeError: If `input_x` is not a Tensor.
TypeError: If dtype of `input_x` is neither int32 nor int64.
ValueError: If `src_format` or `dst_format` is not a str in ['NHWC', 'NCHW'].
ValueError: If input_x shape is not (4, ) or (4, 2).
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self, src_format="NHWC", dst_format="NCHW"):
... super().__init__()
... self.op = P.DataFormatVecPermute(src_format, dst_format)
... def construct(self, x):
... return self.op(x)
...
>>> net = Net()
>>> x = Tensor(np.array([1, 2, 3, 4]).astype(np.int32))
>>> output = net(x)
>>> print(output)
[1 4 2 3]
"""
@prim_attr_register
def __init__(self, src_format='NHWC', dst_format='NCHW'):
"""Initialize DataFormatVecPermute."""
valid_values = ['NHWC', 'NCHW']
self.src_format = validator.check_string(src_format, valid_values, "src_format", self.name)
self.dst_format = validator.check_string(dst_format, valid_values, "dst_format", self.name)
self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
[docs]class DepthwiseConv2dNative(PrimitiveWithInfer):
r"""
DepthwiseConv2dNative will be deprecated in the future. Please use :class:`mindspore.nn.Conv2d` instead.
Supported Platforms:
Deprecated
"""
@prim_attr_register
def __init__(self,
channel_multiplier,
kernel_size,
mode=3,
pad_mode="valid",
pad=0,
stride=1,
dilation=1,
group=1):
"""Initialize DepthwiseConv2dNative"""
logger.warning("WARN_DEPRECATED: The usage of DepthwiseConv2dNative is deprecated."
" Please use nn.Conv2D.")
self.init_prim_io_names(inputs=['x', 'w'], outputs=['output'])
self.kernel_size = _check_positive_int_or_tuple('kernel_size', kernel_size, self.name)
self.stride = _check_positive_int_or_tuple('stride', stride, self.name)
if self.stride[0] != self.stride[1]:
raise ValueError("The height and width of 'stride' must be equal,"
f"but got height:{self.stride[0]}, width:{self.stride[1]}")
self.add_prim_attr('stride', (1, 1, self.stride[0], self.stride[1]))
self.dilation = _check_positive_int_or_tuple('dilation', dilation, self.name)
if self.dilation[0] != self.dilation[1]:
raise ValueError("The height and width of 'dilation' must be equal,"
f"but got height:{self.dilation[0]}, width:{self.dilation[1]}")
self.add_prim_attr('dilation', (1, 1, self.dilation[0], self.dilation[1]))
validator.check_value_type('pad', pad, (int, tuple), self.name)
validator.check_value_type('pad_mode', pad_mode, [str], self.name)
if isinstance(pad, int):
pad = (pad,) * 4
else:
validator.check_equal_int(len(pad), 4, 'pad size', self.name)
self.pad_mode = validator.check_string(pad_mode.lower(), ['valid', 'same', 'pad'], 'pad_mode', self.name)
if pad_mode != 'pad' and pad != (0, 0, 0, 0):
raise ValueError(f"For '{self.name}', the 'pad' must be zero or (0, 0, 0, 0) when 'pad_mode' "
f"is not \"pad\", but got 'pad' is {self.pad} and 'pad_mode' is {pad_mode}.")
self.add_prim_attr("pad", pad)
self.padding = pad
if self.pad_mode == 'pad':
for item in pad:
validator.check_non_negative_int(item, 'pad item', self.name)
self.mode = validator.check_equal_int(mode, 3, "mode", self.name)
self.add_prim_attr('data_format', "NCHW")
self.channel_multiplier = validator.check_positive_int(channel_multiplier, "channel_multiplier", self.name)
self.group = validator.check_positive_int(group, "group", self.name)
self.add_prim_attr('offset_a', 0)
def infer_shape(self, x_shape, w_shape, b_shape=None):
validator.check_equal_int(len(w_shape), 4, "weight rank", self.name)
validator.check_equal_int(len(x_shape), 4, "x rank", self.name)
validator.check("x_shape[1]", x_shape[1], "w_shape[1]", w_shape[1], Rel.EQ, self.name)
validator.check('kernel_size', self.kernel_size, 'w_shape[2:4]', tuple(w_shape[2:4]), Rel.EQ, self.name)
kernel_size_n, _, kernel_size_h, kernel_size_w = w_shape
_, _, stride_h, stride_w = self.stride
_, _, dilation_h, dilation_w = self.dilation
if kernel_size_n != 1:
raise ValueError(f"For '{self.name}', the batch of 'weight' must be 1, but got {kernel_size_n}")
if self.pad_mode == "valid":
h_out = math.ceil((x_shape[2] - dilation_h * (kernel_size_h - 1)) / stride_h)
w_out = math.ceil((x_shape[3] - dilation_w * (kernel_size_w - 1)) / stride_w)
pad_top, pad_bottom, pad_left, pad_right = 0, 0, 0, 0
elif self.pad_mode == "same":
h_out = math.ceil(x_shape[2] / stride_h)
w_out = math.ceil(x_shape[3] / stride_w)
pad_needed_h = max(0, (h_out - 1) * stride_h + dilation_h * (kernel_size_h - 1) + 1 - x_shape[2])
pad_top = math.floor(pad_needed_h / 2)
pad_bottom = pad_needed_h - pad_top
pad_needed_w = max(0, (w_out - 1) * stride_w + dilation_w * (kernel_size_w - 1) + 1 - x_shape[3])
pad_left = math.floor(pad_needed_w / 2)
pad_right = pad_needed_w - pad_left
elif self.pad_mode == 'pad':
pad_top, pad_bottom, pad_left, pad_right = self.padding
h_out = 1 + (x_shape[2] + pad_top + pad_bottom - kernel_size_h - (kernel_size_h - 1) * (dilation_h - 1)) \
/ stride_h
w_out = 1 + (x_shape[3] + pad_left + pad_right - kernel_size_w - (kernel_size_w - 1) * (dilation_w - 1)) \
/ stride_w
h_out = math.floor(h_out)
w_out = math.floor(w_out)
self.pad_list = (pad_top, pad_bottom, pad_left, pad_right)
self.add_prim_attr('pad_list', self.pad_list)
out_channel = self.channel_multiplier * x_shape[1]
out_shape = [x_shape[0], out_channel, h_out, w_out]
return out_shape
def infer_dtype(self, x_dtype, w_dtype, b_dtype=None):
args = {'x': x_dtype, 'w': w_dtype}
validator.check_tensors_dtypes_same_and_valid(args, mstype.number_type, self.name)
if x_dtype.element_type() == mstype.int8:
return mstype.tensor_type(mstype.int32)
return x_dtype
class _Pool(PrimitiveWithInfer):
r"""
Performs max/avg pooling operation.
Args:
kernel_size (Union[int, tuple[int]]): The size of the kernel, that must be a tuple
of two `int` for height and width. Default: 1.
strides (Union[int, tuple[int]]): The stride of the window, that must be
a tuple of two `int` for height and width. Default: 1.
pad_mode (str): The optional value for pad mode, is "same" or "valid".
Default: "valid".
data_format (str): The optional value for data format, is 'NHWC' or 'NCHW'.
Default: "NCHW".
"""
@prim_attr_register
def __init__(self, kernel_size=1, strides=1, pad_mode="valid", data_format="NCHW"):
"""Initialize _Pool."""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
validator.check_value_type('kernel_size', kernel_size, [int, tuple], self.name)
validator.check_value_type('strides', strides, [int, tuple], self.name)
validator.check_value_type('pad_mode', pad_mode, [str], self.name)
self.pad_mode = validator.check_string(pad_mode.upper(), ['VALID', 'SAME'], 'pad_mode', self.name)
self.add_prim_attr("pad_mode", self.pad_mode)
self.is_maxpoolwithargmax = (self.name == "MaxPoolWithArgmax")
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, "
f"but got the 'data_format' is {self.format} and "
f"the platform is {context.get_context('device_target')}.")
if not self.is_maxpoolwithargmax:
self.add_prim_attr('data_format', self.format)
self.kernel_size = _check_positive_int_or_tuple(
"kernel_size", kernel_size, self.name, allow_four=False, ret_four=True)
if self.is_maxpoolwithargmax:
self.kernel_size = (1, self.kernel_size[-2], self.kernel_size[-1], 1)
self.add_prim_attr("kernel_size", self.kernel_size)
self.strides = _check_positive_int_or_tuple("strides", strides, self.name, allow_four=False, ret_four=True)
if self.is_maxpoolwithargmax:
self.strides = (1, self.strides[-2], self.strides[-1], 1)
self.add_prim_attr("strides", self.strides)
def infer_shape(self, x_shape):
x_shape_norm = x_shape if self.format == "NCHW" else [x_shape[0], x_shape[3], x_shape[1], x_shape[2]]
validator.check_equal_int(len(x_shape_norm), 4, "x rank", self.name)
batch, channel, input_h, input_w = x_shape_norm
if self.is_maxpoolwithargmax:
_, kernel_h, kernel_w, _ = self.kernel_size
_, stride_h, stride_w, _ = self.strides
else:
_, _, kernel_h, kernel_w = self.kernel_size
_, _, stride_h, stride_w = self.strides
if self.pad_mode == "VALID":
out_h = math.ceil((input_h - (kernel_h - 1)) / stride_h)
out_w = math.ceil((input_w - (kernel_w - 1)) / stride_w)
elif self.pad_mode == "SAME":
out_h = math.ceil(input_h / stride_h)
out_w = math.ceil(input_w / stride_w)
out_shape = [batch, channel, out_h, out_w] if self.format == "NCHW" else [batch, out_h, out_w, channel]
for shape_value in out_shape:
if shape_value <= 0:
raise ValueError(f"For '{self.name}', the each element of the output shape must be larger than 0, "
f"but got output shape: {out_shape}. The input shape: {x_shape}, "
f"kernel size: {self.kernel_size}, strides: {self.strides}."
f"Please check the official api documents for "
f"more information about the output.")
return out_shape
def infer_dtype(self, x_dtype):
validator.check_subclass("input", x_dtype, mstype.tensor, self.name)
return x_dtype
[docs]class MaxPool(_Pool):
r"""
Max pooling operation.
Applies a 2D max pooling over an input Tensor which can be regarded as a composition of 2D planes.
Typically the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, MaxPool outputs
regional maximum in the :math:`(H_{in}, W_{in})`-dimension. Given kernel size
:math:`ks = (h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1)`, the operation is as follows.
.. math::
\text{output}(N_i, C_j, h, w) = \max_{m=0, \ldots, h_{ker}-1} \max_{n=0, \ldots, w_{ker}-1}
\text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n)
Args:
kernel_size (Union[int, tuple[int]]): The size of kernel used to take the maximum value,
is an int number that represents height and width of the kernel, or a tuple
of two int numbers that represent height and width respectively. Default: 1.
strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
not only the height of movement but also the width of movement, or a tuple of two int numbers that
represent height and width of movement respectively. Default: 1.
pad_mode (str): The optional value of pad mode is "same" or "valid".
Default: "valid".
- same: Adopts the way of completion. The height and width of the output will be the same as
the input. The total number of padding will be calculated in horizontal and vertical
directions and evenly distributed to top, bottom, left and right if possible.
Otherwise, the last extra padding will be done from the bottom and the right side.
- valid: Adopts the way of discarding. The possible largest height and width of output
will be returned without padding. Extra pixels will be discarded.
data_format (str) : The optional value for data format, is 'NHWC' or 'NCHW'.
Default: 'NCHW'.
Inputs:
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
Outputs:
Tensor, with shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Raises:
TypeError: If `kernel_size` or `strides` is neither int nor tuple.
ValueError: If `pad_mode` is neither 'valid' nor 'same' with not case sensitive.
ValueError: If `data_format` is neither 'NCHW' nor 'NHWC'.
ValueError: If `kernel_size` or `strides` is less than 1.
ValueError: If length of shape of `input` is not equal to 4.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> x = Tensor(np.arange(1 * 3 * 3 * 4).reshape((1, 3, 3, 4)), mindspore.float32)
>>> maxpool_op = ops.MaxPool(pad_mode="VALID", kernel_size=2, strides=1)
>>> output = maxpool_op(x)
>>> print(output)
[[[[ 5. 6. 7.]
[ 9. 10. 11.]]
[[17. 18. 19.]
[21. 22. 23.]]
[[29. 30. 31.]
[33. 34. 35.]]]]
"""
@prim_attr_register
def __init__(self, kernel_size=1, strides=1, pad_mode="valid", data_format="NCHW"):
"""Initialize MaxPool."""
super(MaxPool, self).__init__(kernel_size, strides, pad_mode, data_format)
class MaxPoolV1(Primitive):
r"""
Maxpooling operation.
Applies a 2D maxpooling over an input Tensor which can be regarded as a composition of 2D planes.
Typically, the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, MaxPoolV1
outputs regional maximum in the :math:`(H_{in}, W_{in})`-dimension. Given kernel size
:math:`ks = (h_{ker}, w_{ker})` and stride :math:`s = (s_h, s_w)`, the operation is as follows.
.. math::
\text{output}(N_i, C_j, h, w) = \max_{m=0, \ldots, h_{ker}-1} \max_{n=0, \ldots, w_{ker}-1}
\text{input}(N_i, C_j, s_h \times h + m, s_w \times w + n)
Args:
kernel_size (Union[int, tuple[int]]): The size of kernel used to take the max value,
is an integer that represents height and width of the kernel, or a tuple
of two integers that represent height and width respectively. Default: 1.
strides (Union[int, tuple[int]]): The distance of kernel moving, an integer that represents
the height and width of movement are both strides, or a tuple of two integers that
represent height and width of movement, respectively. Default: 1.
pad_mode (str): The optional value for pad mode, is "same" or "valid".
Default: "valid".
- same: Adopts the way of completion. The height and width of the output will be the same as
the input. The number of padding will be calculated in horizontal and vertical
directions, and evenly distributed to top and bottom, left and right if possible.
Otherwise, the extra padding will be done from the bottom and the right side.
- valid: Adopts the way of discarding. The possible largest height and width of the
output will be returned without padding. Extra pixels will be discarded.
data_format (str) : The optional value for data format, is 'NCHW' or 'NHWC'.
Default: 'NCHW'.
Inputs:
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
Outputs:
Tensor, with shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Raises:
TypeError: If `kernel_size` or `strides` is neither int nor tuple.
ValueError: If `pad_mode` is neither 'valid' nor 'same' with not case sensitive.
ValueError: If `data_format` is neither 'NHWC' nor 'NCHW'.
ValueError: If `kernel_size` or `strides` is less than 1.
ValueError: If the length of shape of `input` is not equal to 4.
Supported Platforms:
``Ascend``
Examples:
>>> x = Tensor(np.arange(1 * 3 * 3 * 4).reshape((1, 3, 3, 4)), mindspore.float32)
>>> maxpoolv1_op = ops.MaxPoolV1(pad_mode="VALID", kernel_size=2, strides=1)
>>> output_ = maxpoolv1_op(x)
>>> print(output_)
[[[[ 5. 6. 7.]
[ 9. 10. 11.]]
[[17. 18. 19.]
[21. 22. 23.]]
[[29. 30. 31.]
[33. 34. 35.]]]]
"""
@prim_attr_register
def __init__(self, kernel_size=1, strides=1, pad_mode="valid", data_format="NCHW"):
"""Initialize MaxPoolV1."""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
validator.check_value_type('kernel_size', kernel_size, [int, tuple], self.name)
validator.check_value_type('strides', strides, [int, tuple], self.name)
validator.check_value_type('pad_mode', pad_mode, [str], self.name)
self.pad_mode = validator.check_string(
pad_mode.upper(), ['VALID', 'SAME'], 'pad_mode', self.name)
self.add_prim_attr("pad_mode", self.pad_mode)
self.format = validator.check_string(
data_format, ['NCHW', 'NHWC'], 'format', self.name)
self.add_prim_attr('data_format', self.format)
self.kernel_size = _check_positive_int_or_tuple(
"kernel_size", kernel_size, self.name, allow_four=False, ret_four=True)
self.strides = _check_positive_int_or_tuple(
"strides", strides, self.name, allow_four=False, ret_four=True)
kernel_size_adapted = self.kernel_size if self.format == 'NCHW' else (
self.kernel_size[0], self.kernel_size[2], self.kernel_size[3], self.kernel_size[1])
strides_adapted = self.strides if self.format == 'NCHW' else (
self.strides[0], self.strides[2], self.strides[3], self.strides[1])
self.add_prim_attr("kernel_size", kernel_size_adapted)
self.add_prim_attr("strides", strides_adapted)
[docs]class MaxPoolWithArgmax(Primitive):
r"""
Performs max pooling on the input Tensor and returns both max values and indices.
Typically the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, MaxPool outputs
regional maximum in the :math:`(H_{in}, W_{in})`-dimension. Given kernel size
:math:`ks = (h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1)`, the operation is as follows.
.. math::
\text{output}(N_i, C_j, h, w) = \max_{m=0, \ldots, h_{ker}-1} \max_{n=0, \ldots, w_{ker}-1}
\text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n)
Args:
kernel_size (Union[int, tuple[int]]): The size of kernel used to take the maximum value and argmax
value, is an int number that represents height and width of the kernel, or a tuple of
two int numbers that represent height and width respectively. Default: 1.
strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
not only the height of movement but also the width of movement, or a tuple of two int numbers that
represent height and width of movement respectively. Default: 1.
pad_mode (str): The optional value for pad mode, is "same" or "valid".
Default: "valid".
- same: Adopts the way of completion. The height and width of the output will be the same as
the input. The total number of padding will be calculated in horizontal and vertical
directions and evenly distributed to top, bottom, left and right if possible.
Otherwise, the last extra padding will be done from the bottom and the right side.
- valid: Adopts the way of discarding. The possible largest height and width of output
will be returned without padding. Extra pixels will be discarded.
data_format (str) : The optional value for data format, is 'NHWC' or 'NCHW'.
Default: 'NCHW'.
Inputs:
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
Data type must be float16 or float32.
Outputs:
Tuple of 2 Tensors, representing the maxpool result and where the max values are generated.
- **output** (Tensor) - Maxpooling result, with shape :math:`(N, C_{out}, H_{out}, W_{out})`.
It has the same data type as `x`.
- **mask** (Tensor) - Max values' index represented by the mask. Data type is int32.
Raises:
TypeError: If the data type of `x` is neither float16 nor float32.
TypeError: If `kernel_size` or `strides` is neither an int nor a tuple.
TypeError: If `x` is not a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> x = Tensor(np.arange(1 * 3 * 3 * 4).reshape((1, 3, 3, 4)), mindspore.float32)
>>> maxpool_arg_op = ops.MaxPoolWithArgmax(pad_mode="VALID", kernel_size=2, strides=1)
>>> output_tensor, argmax = maxpool_arg_op(x)
>>> print(output_tensor)
[[[[ 5. 6. 7.]
[ 9. 10. 11.]]
[[17. 18. 19.]
[21. 22. 23.]]
[[29. 30. 31.]
[33. 34. 35.]]]]
"""
@prim_attr_register
def __init__(self, kernel_size=1, strides=1, pad_mode="valid", data_format="NCHW"):
"""Initialize MaxPoolWithArgmax."""
self.init_prim_io_names(inputs=['x'], outputs=['output', 'mask'])
validator.check_value_type('kernel_size', kernel_size, [int, tuple], self.name)
validator.check_value_type('strides', strides, [int, tuple], self.name)
validator.check_value_type('pad_mode', pad_mode, [str], self.name)
self.pad_mode = validator.check_string(pad_mode.upper(), ['VALID', 'SAME'], 'pad_mode', self.name)
self.add_prim_attr("pad_mode", self.pad_mode)
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, "
f"but got the 'data_format' is {self.format} and "
f"the platform is {context.get_context('device_target')}.")
self.kernel_size = _check_positive_int_or_tuple(
"kernel_size", kernel_size, self.name, allow_four=False, ret_four=True)
self.kernel_size = (1, self.kernel_size[-2], self.kernel_size[-1], 1)
self.add_prim_attr("kernel_size", self.kernel_size)
self.strides = _check_positive_int_or_tuple("strides", strides, self.name, allow_four=False, ret_four=True)
self.strides = (1, self.strides[-2], self.strides[-1], 1)
self.add_prim_attr("strides", self.strides)
[docs]class MaxPool3D(PrimitiveWithInfer):
r"""
3D max pooling operation.
Applies a 3D max pooling over an input Tensor which can be regarded as a composition of 3D planes.
Typically the input is of shape :math:`(N_{in}, C_{in}, D_{in}, H_{in}, W_{in})`, MaxPool outputs
regional maximum in the :math:`(D_{in}, H_{in}, W_{in})`-dimension. Given kernel size
:math:`ks = (d_{ker}, h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1, s_2)`, the operation is as follows.
.. math::
\text{output}(N_i, C_j, d, h, w) =
\max_{l=0, \ldots, d_{ker}-1} \max_{m=0, \ldots, h_{ker}-1} \max_{n=0, \ldots, w_{ker}-1}
\text{input}(N_i, C_j, s_0 \times d + l, s_1 \times h + m, s_2 \times w + n)
Args:
kernel_size (Union[int, tuple[int]]): The size of kernel used to take the maximum value,
is an int number that represents depth, height and width of the kernel, or a tuple
of three int numbers that represent depth, height and width respectively. Default: 1.
strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
not only the depth, height of movement but also the width of movement,, or a tuple of three int numbers that
represent depth, height and width of movement respectively. Default: 1.
pad_mode (str): The optional value of pad mode is "same", "valid" or "pad".
Default: "valid".
- same: Adopts the way of completion. The height and width of the output will be the same as
the input. The total number of padding will be calculated in horizontal and vertical
directions and evenly distributed to top, bottom, left and right if possible.
Otherwise, the last extra padding will be done from the bottom and the right side.
- valid: Adopts the way of discarding. The possible largest height and width of output
will be returned without padding. Extra pixels will be discarded.
- pad: Implicit paddings on both sides of the input in depth, height and width. The number of "pad" will
be padded to the input Tensor borders. "pad_list" must be greater than or equal to 0.
pad_list (Union(int, tuple[int])): The pad value to be filled. Default: 0. If `pad` is an integer, the paddings
of head, tail, top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of six
integers, the padding of head, tail, top, bottom, left and right equals to pad[0], pad[1], pad[2],
pad[3], pad[4] and pad[5] correspondingly.
ceil_mode (Union[bool, None]): Whether to use ceil instead of floor to calculate output shape.
Only effective in "pad" mode.
When "pad_mode" is "pad" and "ceil_mode" is "None", "ceil_mode" will be set as "False". Default: None.
data_format (str) : The optional value for data format. Currently only support 'NCDHW'. Default: 'NCDHW'.
Inputs:
- **x** (Tensor) - Tensor of shape :math:`(N, C, D_{in}, H_{in}, W_{in})`.
Data type must be float16 or float32.
Outputs:
Tensor, with shape :math:`(N, C, D_{out}, H_{out}, W_{out})`. Has the data type of `x`.
Raises:
TypeError: If `kernel_size` or `strides` is neither an int nor a tuple.
TypeError: If `pad_mode` or `data_format` is not a string.
ValueError: If numbers in `kernel_size` or `strides` are not positive.
ValueError: If `pad_mode` is not one of 'same', 'valid' or 'pad'.
ValueError: If `pad_mode` is 'same' or 'valid', 'ceil_mode' is not None.
ValueError: If `kernel_size` or `strides` is a tuple whose length is not equal to 3.
ValueError: If `data_format` is not 'NCDHW'.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> x = Tensor(np.arange(1 * 2 * 2 * 2 * 3).reshape((1, 2, 2, 2, 3)), mindspore.float32)
>>> max_pool3d = ops.MaxPool3D(kernel_size=2, strides=1, pad_mode="valid")
>>> output = max_pool3d(x)
>>> print(output)
[[[[[10. 11.]]]
[[[22. 23.]]]]]
"""
@prim_attr_register
def __init__(self, kernel_size=1, strides=1, pad_mode="VALID", pad_list=0, ceil_mode=None, data_format="NCDHW"):
"""Initialize MaxPool3D."""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
validator.check_value_type('kernel_size', kernel_size, [int, tuple], self.name)
validator.check_value_type('strides', strides, [int, tuple], self.name)
validator.check_value_type('pad_mode', pad_mode, [str], self.name)
self.pad_mode = validator.check_string(pad_mode.upper(), ['VALID', 'SAME', 'PAD'], 'pad_mode', self.name)
if pad_mode.upper() == "PAD":
self.pad_mode = "CALCULATED"
self.add_prim_attr("pad_mode", self.pad_mode)
self.data_format = validator.check_string(data_format, ['NCDHW'], 'data_format', self.name)
self.kernel_size = _check_3d_int_or_tuple("kernel_size", kernel_size, self.name, ret_five=True)
self.add_prim_attr("kernel_size", self.kernel_size)
self.strides = _check_3d_int_or_tuple("strides", strides, self.name, ret_five=True)
self.add_prim_attr("strides", self.strides)
if ceil_mode is None:
self.ceil_mode = False
else:
self.ceil_mode = validator.check_value_type('ceil_mode', ceil_mode, [bool], self.name)
if self.pad_mode != "CALCULATED":
raise ValueError("When the 'pad_mode' is 'same' or 'valid', the 'ceil_mode' only supports 'None'.")
self.add_prim_attr("ceil_mode", int(self.ceil_mode))
validator.check_value_type('pad_list', pad_list, (int, tuple), self.name)
self.pad_list = pad_list
if isinstance(self.pad_list, int):
self.pad_list = (self.pad_list,) * 6
if len(self.pad_list) == 3:
self.pad_list = (pad_list[0], pad_list[0], pad_list[1], pad_list[1], pad_list[2], pad_list[2])
if len(self.pad_list) != 3 and len(self.pad_list) != 6:
raise ValueError(f"For '{self.name}', attr 'pad_list' must be an positive int number or a tuple of "
f"three or six positive int numbers, but got {len(self.pad_list)} numbers.")
if self.pad_mode != 'CALCULATED' and self.pad_list != (0, 0, 0, 0, 0, 0):
raise ValueError(f"For '{self.name}', the 'pad_list' must be zero or (0, 0, 0, 0, 0, 0) when 'pad_mode' "
f"is not \"pad\", but got 'pad_list' is {pad_list} and 'pad_mode' is {pad_mode}.")
if self.pad_mode == 'CALCULATED':
for item in self.pad_list:
validator.check_non_negative_int(item, 'pad_list item', self.name)
self.add_prim_attr("pad_list", self.pad_list)
def infer_shape(self, x_shape):
validator.check_equal_int(len(x_shape), 5, "x rank", self.name)
batch, channel, input_d, input_h, input_w = x_shape
self.add_prim_attr("x_shape", x_shape)
_, _, kernel_d, kernel_h, kernel_w = self.kernel_size
_, _, stride_d, stride_h, stride_w = self.strides
if self.pad_mode == "VALID":
out_d = math.ceil((input_d - (kernel_d - 1)) / stride_d)
out_h = math.ceil((input_h - (kernel_h - 1)) / stride_h)
out_w = math.ceil((input_w - (kernel_w - 1)) / stride_w)
elif self.pad_mode == "SAME":
out_d = math.ceil(input_d / stride_d)
out_h = math.ceil(input_h / stride_h)
out_w = math.ceil(input_w / stride_w)
else:
out_d = ((input_d + self.pad_list[0] + self.pad_list[1] -
(kernel_d - 1) - 1) / stride_d) + 1
out_h = ((input_h + self.pad_list[2] + self.pad_list[3] -
(kernel_h - 1) - 1) / stride_h) + 1
out_w = ((input_w + self.pad_list[4] + self.pad_list[5] -
(kernel_w - 1) - 1) / stride_w) + 1
if self.ceil_mode:
out_d = math.ceil(out_d)
out_h = math.ceil(out_h)
out_w = math.ceil(out_w)
else:
out_d = math.floor(out_d)
out_h = math.floor(out_h)
out_w = math.floor(out_w)
out_shape = [batch, channel, out_d, out_h, out_w]
_check_shape('output', out_shape, self.name)
return out_shape
def infer_dtype(self, x_dtype):
validator.check_tensor_dtype_valid("x", x_dtype, [mstype.float16, mstype.float32], self.name)
return x_dtype
[docs]class AvgPool(_Pool):
r"""
Average pooling operation.
Refer to :func:`mindspore.ops.avg_pool2d` for more detail.
Args:
kernel_size (Union[int, tuple[int]]): The size of kernel used to take the average value,
is an int number that represents height and width of the kernel, or a tuple
of two int numbers that represent height and width respectively. Default: 1.
strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
the height and width of movement are both strides, or a tuple of two int numbers that
represent height and width of movement respectively. Default: 1.
pad_mode (str): The optional value for pad mode, is 'same' or 'valid'.
Default: 'valid'.
- same: The height and width of the output are the same as the input divided by 'strides'
and rounded up.
- valid: Returns the output of the valid calculation without filling. Redundant pixels that
do not satisfy the calculation will be discarded.
data_format (str): The format of input and output data. It should be 'NHWC' or 'NCHW'.
Default: 'NCHW'.
Inputs:
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
Outputs:
Tensor, with shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Raises:
TypeError: If `kernel_size` or `strides` is neither int nor tuple.
ValueError: If `kernel_size` or `strides` is less than 1.
ValueError: If `pad_mode` is neither 'valid' nor 'same' with not case sensitive.
ValueError: If `data_format` is neither 'NCHW' nor 'NHWC'.
ValueError: If length of shape of `x` is not equal to 4.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.avgpool_op = ops.AvgPool(pad_mode="VALID", kernel_size=2, strides=1)
...
... def construct(self, x):
... result = self.avgpool_op(x)
... return result
...
>>> x = Tensor(np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4), mindspore.float32)
>>> net = Net()
>>> output = net(x)
>>> print(output)
[[[[ 2.5 3.5 4.5]
[ 6.5 7.5 8.5]]
[[14.5 15.5 16.5]
[18.5 19.5 20.5]]
[[26.5 27.5 28.5]
[30.5 31.5 32.5]]]]
"""
@prim_attr_register
def __init__(self, kernel_size=1, strides=1, pad_mode="valid", data_format="NCHW"):
"""Initialize AvgPool."""
super(AvgPool, self).__init__(kernel_size, strides, pad_mode, data_format)
class AvgPoolV1(Primitive):
r"""
Average-pooling operation.
Applies a 2D average pooling over an input Tensor which can be regarded as a composition of 2D planes.
Typically the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, AvgPoolV1 outputs
regional average in the :math:`(H_{in}, W_{in})`-dimension. Given window size
:math:`ks = (h_{ker}, w_{ker})` and strides :math:`s = (s_0, s_1)`, the operation is as follows.
.. math::
\text{output}(N_i, C_j, h, w) = \frac{1}{h_{ker} * w_{ker}} \sum_{m=0}^{h_{ker}-1} \sum_{n=0}^{w_{ker}-1}
\text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n)
.. warning::
- Only single input and single output are supported.
- Global average pooling is supported.
- The height of "kernel_size" and the weight of "kernel_size" are positive integers within the range [1, 255].
ksize_h * ksize_w < 256.
- Due to instruction restrictions, the values of "strides_h" and "strides_w" are
positive integers within the range [1, 64).
Args:
kernel_size (Union[int, tuple[int]]): The size of the kernel used to take the average value,
is an integer that represents height and width of the kernel, or a tuple
of two integers that represent height and width respectively. Default: 1.
strides (Union[int, tuple[int]]): The distance of kernel moving, an integer that represents
the height and width of movement are both strides, or a tuple of two integers that
represent height and width of movement, respectively. Default: 1.
pad_mode (str): The optional value for pad mode, should be one of "same" or "valid".
Default: "valid".
- same: Adopts the way of completion. The height and width of output will be the same as
the input. The total number of padding will be calculated horizontally and vertically,
and evenly distributed to top and bottom, left and right if possible.
Otherwise, the last extra padding will be done from bottom and right.
- valid: Adopts the way of discarding. The largest possible height and width of output
will be returned without padding. Extra pixels will be discarded.
data_format (str): The format of input and output data. Should be 'NHWC' or 'NCHW'.
Default: 'NCHW'.
Inputs:
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
Outputs:
Tensor, with shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Raises:
TypeError: If `kernel_size` or `strides` is neither int nor tuple.
ValueError: If `pad_mode` is neither 'valid' nor 'same' with not case sensitive.
ValueError: If `data_format` is neither 'NCHW' nor 'NHWC'.
ValueError: If `kernel_size` or `strides` is less than 1.
ValueError: If length of shape of `x` is not equal to 4.
Supported Platforms:
``Ascend``
Examples:
>>> x = Tensor(np.arange(1 * 2 * 4 * 4).reshape((1, 2, 4, 4)), mindspore.float64)
>>> avgpoolv1_op = ops.AvgPoolV1(pad_mode="VALID", kernel_size=3, strides=1)
>>> _output = avgpoolv1_op(x)
>>> print(_output)
[[[[ 5. 6.]
[ 9. 10.]]
[[21. 22.]
[25. 26.]]]]
"""
@prim_attr_register
def __init__(self, kernel_size=1, strides=1, pad_mode="valid", data_format="NCHW"):
"""Initialize AvgPoolV1."""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
validator.check_value_type('kernel_size', kernel_size, [int, tuple], self.name)
validator.check_value_type('strides', strides, [int, tuple], self.name)
validator.check_value_type('pad_mode', pad_mode, [str], self.name)
self.pad_mode = validator.check_string(
pad_mode.upper(), ['VALID', 'SAME'], 'pad_mode', self.name)
self.add_prim_attr("pad_mode", self.pad_mode)
self.format = validator.check_string(
data_format, ['NCHW', 'NHWC'], 'format', self.name)
self.add_prim_attr('data_format', self.format)
self.kernel_size = _check_positive_int_or_tuple(
"kernel_size", kernel_size, self.name, allow_four=False, ret_four=True)
self.strides = _check_positive_int_or_tuple(
"strides", strides, self.name, allow_four=False, ret_four=True)
# adapt data_format
self.kernel_size_adapted = self.kernel_size if self.format == "NCHW" else (
self.kernel_size[0], self.kernel_size[2], self.kernel_size[3], self.kernel_size[1])
self.add_prim_attr("kernel_size", self.kernel_size_adapted)
self.strides_adapted = self.strides if self.format == "NCHW" else (
self.strides[0], self.strides[2], self.strides[3], self.strides[1])
self.add_prim_attr("strides", self.strides_adapted)
class MaxPool3DWithArgmax(Primitive):
r"""
Performs a 3D max pooling on the input Tensor and returns both max values and indices.
Typically the input is a Tensor with shape :math:`(N_{in}, C_{in}, D_{in}, H_{in}, W_{in})`, outputs
regional maximum in the :math:`(D_{in}, H_{in}, W_{in})`-dimension. Given `ksize`
:math:`ks = (d_{ker}, h_{ker}, w_{ker})` and `strides` :math:`s = (s_0, s_1, s_2)`, the operation is as follows.
.. math::
\text{output}(N_i, C_j, d, h, w) =
\max_{l=0, \ldots, d_{ker}-1} \max_{m=0, \ldots, h_{ker}-1} \max_{n=0, \ldots, w_{ker}-1}
\text{input}(N_i, C_j, s_0 \times d + l, s_1 \times h + m, s_2 \times w + n)
Args:
ksize (Union[int, tuple[int]]): The size of kernel used to take the maximum value and arg
value, is an int number that represents depth, height and width of the kernel, or a tuple of
three int numbers that represent depth, height and width respectively.
strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents the depth,
height and width of movement are both strides, or a tuple of three int numbers that
represent depth, height and width of movement respectively.
pads (Union[int, tuple[int]]): An int number that represents the depth, height and width of movement are both
strides, or a tuple of three int numbers that represent depth, height and width of movement respectively.
dilation (Union[int, tuple[int]]): Default: '(1, 1, 1)'.
ceil_mode (bool): Whether to use ceil instead of floor to calculate output shape. Default: False.
data_format (str) : The optional value for data format. Currently only support 'NCDHW'. Default: 'NCDHW'.
argmax_type (mindspore.dtype) : The dtype for argmax. Default: mstype.int64.
Inputs:
- **x** (Tensor) - Tensor of shape :math:`(N_{in}, C_{in}, D_{in}, H_{in}, W_{in})` with data type of int8,
int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32 or float64.
Outputs:
Tuple of 2 Tensors, representing the maxpool result and where the max values are generated.
- **output** (Tensor) - Maxpooling result, with shape :math:`(N_{out}, C_{out}, D_{out}, H_{out}, W_{out})`.
It has the same data type as `x`.
- **argmax** (Tensor) - Index corresponding to the maximum value. Data type is int32 or int64.
Raises:
TypeError: If `x` is not a Tensor.
ValueError: If length of shape of `x` is not equal to 5.
TypeError: If `ksize` , `strides` , `pads` or `dilation` is not int or tuple.
ValueError: If `ksize` or `strides` is less than 1.
ValueError: If `pads` is less than 0.
ValueError: If `data_format` is not 'NCDHW'.
ValueError: If `argmax_type` is not mindspore.int64 or mindspore.int32.
Supported Platforms:
``GPU``
Examples:
>>> x = Tensor(np.arange(2 * 1 * 2 * 2 * 2).reshape((2, 1, 2, 2, 2)), mindspore.float32)
>>> max_pool3d_with_arg_op = ops.MaxPool3DWithArgmax(ksize=2, strides=1, pads=1)
>>> output_tensor, argmax = max_pool3d_with_arg_op(x)
>>> print(output_tensor.shape)
(2, 1, 3, 3, 3)
>>> print(argmax.shape)
(2, 1, 3, 3, 3)
"""
@prim_attr_register
def __init__(self, ksize, strides, pads, dilation=(1, 1, 1), ceil_mode=False,
data_format="NCDHW", argmax_type=mstype.int64):
"""Initialize MaxPool3DWithArgmax."""
self.init_prim_io_names(inputs=['x'], outputs=['y', 'argmax'])
validator.check_value_type('ceil_mode', ceil_mode, bool, self.name)
validator.check_value_type('data_format', data_format, str, self.name)
validator.check_value_type("argmax_type", argmax_type, [mstype.Type], self.name)
argmax_type_valid_values = (mstype.int32, mstype.int64)
validator.check_type_name(
"argmax_type", argmax_type, argmax_type_valid_values, self.name)
self.data_format = validator.check_string(
data_format, ['NCDHW'], 'data_format', self.name)
if argmax_type == mstype.int32:
self.add_prim_attr('argmax_type', 'int32')
elif argmax_type == mstype.int64:
self.add_prim_attr('argmax_type', 'int64')
else:
raise ValueError(f"For '{self.name}', the 'argmax_type' must be mstype.int32 or mstype.int64, "
f"but got {self.argmax_type}.")
self.ksize = _check_3d_int_or_tuple("ksize", ksize, self.name, ret_five=False)
self.add_prim_attr('ksize', self.ksize)
self.strides = _check_3d_int_or_tuple("strides", strides, self.name, ret_five=False)
self.add_prim_attr('strides', self.strides)
self.pads = _check_3d_int_or_tuple("pads", pads, self.name, greater_zero=False, ret_five=False)
self.add_prim_attr('pads', self.pads)
self.dilation = _check_3d_int_or_tuple("dilation", dilation, self.name, allow_five=True, ret_five=False)
self.add_prim_attr('dilation', self.dilation)
[docs]class Conv2DTranspose(Conv2DBackpropInput):
"""
Compute a 2D transposed convolution, which is also known as a deconvolution
(although it is not an actual deconvolution).
Args:
out_channel (int): The dimensionality of the output space.
kernel_size (Union[int, tuple[int]]): The size of the convolution window.
pad_mode (str): Modes to fill padding. It could be "valid", "same", or "pad". Default: "valid".
pad (Union[int, tuple[int]]): The pad value to be filled. Default: 0. If `pad` is an integer, the paddings of
top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of four integers, the
padding of top, bottom, left and right equal to pad[0], pad[1], pad[2], and pad[3] correspondingly.
pad_list (Union[str, None]): The pad list like (top, bottom, left, right). Default: None.
mode (int): Modes for different convolutions. The value is currently not used. Default: 1.
stride (Union[int. tuple[int]]): The stride to be applied to the convolution filter. Default: 1.
dilation (Union[int. tuple[int]]): Specifies the dilation rate to be used for the dilated convolution.
Default: 1.
group (int): Splits input into groups. Default: 1.
data_format (str): The format of input and output data. It should be 'NHWC' or 'NCHW',\
default is 'NCHW'.
Inputs:
- **dout** (Tensor) - the gradients with respect to the output of the convolution.
The shape conforms to the default data_format :math:`(N, C_{out}, H_{out}, W_{out})`.
- **weight** (Tensor) - Set size of kernel is :math:`(K_1, K_2)`, then the shape is
:math:`(C_{out}, C_{in}, K_1, K_2)`.
- **input_size** (Tensor) - A tuple describes the shape of the input which conforms to the format
:math:`(N, C_{in}, H_{in}, W_{in})`.
Outputs:
Tensor, the gradients with respect to the input of convolution. It has the same shape as the input.
Raises:
TypeError: If `kernel_size`, `stride`, `pad` or `dilation` is neither an int nor a tuple.
TypeError: If `out_channel` or `group` is not an int.
ValueError: If `kernel_size`, `stride` or `dilation` is less than 1.
ValueError: If `pad_mode` is not one of 'same', 'valid' or 'pad'.
ValueError: If `padding` is a tuple whose length is not equal to 4.
ValueError: If `pad_mode` it not equal to 'pad' and `pad` is not equal to (0, 0, 0, 0).
ValueError: If `data_format` is neither 'NCHW' nor 'NHWC'.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> dout = Tensor(np.ones([10, 32, 30, 30]), mindspore.float32)
>>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32)
>>> x = Tensor(np.ones([10, 32, 32, 32]))
>>> conv2d_transpose_input = ops.Conv2DTranspose(out_channel=32, kernel_size=3)
>>> output = conv2d_transpose_input(dout, weight, ops.shape(x))
>>> print(output.shape)
(10, 32, 32, 32)
"""
@prim_attr_register
def __init__(self, out_channel, kernel_size, pad_mode="valid", pad=0,
pad_list=None, mode=1, stride=1, dilation=1, group=1, data_format="NCHW"):
"""Initialize Conv2DTranspose."""
super(Conv2DTranspose, self).__init__(out_channel, kernel_size, pad_mode, pad,
pad_list, mode, stride, dilation, group, data_format)
[docs]class BiasAdd(Primitive):
r"""
Returns the sum of the input Tensor and the bias Tensor. Before adding, the bias Tensor will be broadcasted to be
consistent with the shape of the input Tensor.
Args:
data_format (str): The format of input and output data. It should be 'NHWC', 'NCHW' or 'NCDHW'.
Default is 'NCHW'.
Inputs:
- **input_x** (Tensor) - The input tensor. The shape can be 2-5 dimensions.
The data type should be float16 or float32.
- **bias** (Tensor) - The bias tensor, with shape :math:`(C)`. C must be the same as channel dimension C of
`input_x`. The data type should be float16 or float32.
Outputs:
Tensor, with the same shape and data type as `input_x`.
Raises:
TypeError: If `data_format` is not a str.
ValueError: If value of `data_format` is not in the range of ['NHWC','NCHW','NCDHW'].
TypeError: If `input_x` or `bias` is not a Tensor.
TypeError: If dtype of `input_x` or `bias` is neither float16 nor float32.
TypeError: If dtype of `input_x` or `bias` is inconsistent.
TypeError: If dimension of `input_x` is not in the range [2, 5].
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.arange(6).reshape((2, 3)), mindspore.float32)
>>> bias = Tensor(np.random.random(3).reshape((3,)), mindspore.float32)
>>> bias_add = ops.BiasAdd()
>>> output = bias_add(input_x, bias)
>>> print(output.shape)
(2, 3)
"""
@prim_attr_register
def __init__(self, data_format="NCHW"):
"""Initialize BiasAdd."""
self.init_prim_io_names(inputs=['x', 'b'], outputs=['output'])
self.format = validator.check_string(data_format, ['NCHW', 'NHWC', 'NCDHW'], 'format', self.name)
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, "
f"but got the 'data_format' is {self.format} and "
f"the platform is {context.get_context('device_target')}.")
self.add_prim_attr('data_format', self.format)
[docs]class NLLLoss(PrimitiveWithInfer):
r"""
Gets the negative log likelihood loss between logits and labels.
The nll loss with reduction=none can be described as:
.. math::
\ell(x, t)=L=\left\{l_{1}, \ldots, l_{N}\right\}^{\top},
\quad l_{n}=-w_{t_{n}} x_{n, t_{n}},
\quad w_{c}=\text { weight }[c] \cdot 1
where :math:`x` is the logits, :math:`t` is the labels, :math:`w` is the weight,
N is the batch size, :math:`c` belonging to [0, C-1] is class index, where :math:`C` is the number of classes.
If reduction is not 'none' (default 'mean'), then
.. math::
\ell(x, t)=\left\{\begin{array}{ll}
\sum_{n=1}^{N} \frac{1}{\sum_{n=1}^{N} w_{t n}} l_{n}, & \text { if reduction }=\text { 'mean'; } \\
\sum_{n=1}^{N} l_{n}, & \text { if reduction }=\text { 'sum' }
\end{array}\right.
Args:
reduction (str): Apply specific reduction method to the output: 'none', 'mean', or 'sum'. Default: 'mean'.
Inputs:
- **logits** (Tensor) - Input logits, with shape :math:`(N, C)`. Data type only supports float32 or float16.
- **labels** (Tensor) - Ground truth labels, with shape :math:`(N,)`. Data type only supports int32.
- **weight** (Tensor) - The rescaling weight to each class, with shape :math:`(C,)` and data type only
supports float32 or float16.
Outputs:
Tuple of 2 tensors composed with `loss` and `total_weight`.
- **loss** (Tensor) - When `reduction` is 'none' and `logits` is a 2D tensor, the `loss` shape is :math:`(N,)`.
Otherwise, the `loss` is a scalar. The data type is the same with `input's`.
- **total_weight** (Tensor) - The `total_weight` is a scalar. The data type is the same with `weight's`.
Raises:
TypeError: If dtype of `logits` or `weight` is neither float16 nor float32, `labels` is not int32.
ValueError: If `logits` is not a one or two dimension tensor, `labels` and `weight` are not
one dimension tensors.
When `logits` is a two dimension tensor, the first dimension of `logits` is not equal to `labels`,
and second dimension of `logits` is not equal to `weight`.
When `logits` is a one dimension tensor, the dimensions of `logits`, `labels`
and `weight` should be equal to each other.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> logits = Tensor(np.array([[0.5488135, 0.71518934],
... [0.60276335, 0.5448832],
... [0.4236548, 0.6458941]]).astype(np.float32))
>>> labels = Tensor(np.array([0, 0, 0]).astype(np.int32))
>>> weight = Tensor(np.array([0.3834415, 0.79172504]).astype(np.float32))
>>> nll_loss = ops.NLLLoss(reduction="mean")
>>> loss, weight = nll_loss(logits, labels, weight)
>>> print(loss)
-0.52507716
>>> print(weight)
1.1503246
"""
@prim_attr_register
def __init__(self, reduction="mean"):
"""Initialize NLLLoss"""
self.init_prim_io_names(inputs=['x', 'target', "weight"], outputs=['loss'])
self.reduction = validator.check_string(reduction, ['none', 'sum', 'mean'], 'reduction', self.name)
self.add_prim_attr('reduction', self.reduction)
def infer_shape(self, x_shape, t_shape, w_shape):
validator.check_int(len(x_shape), [1, 2], Rel.IN, "x rank", self.name)
validator.check_int(len(t_shape), 1, Rel.EQ, "target rank", self.name)
validator.check_int(len(w_shape), 1, Rel.EQ, "weight rank", self.name)
validator.check(f"input_shape[0]", x_shape[0], "target_shape", t_shape[0], Rel.EQ, self.name)
if len(x_shape) == 1:
validator.check(f"input_shape[0]", x_shape[0], "weight_shape", w_shape[0], Rel.EQ, self.name)
else:
validator.check(f"input_shape[1]", x_shape[1], "weight_shape", w_shape[0], Rel.EQ, self.name)
if self.reduction == "none":
return t_shape, ()
return (), ()
def infer_dtype(self, x_dtype, t_dtype, w_dtype):
valid_dtypes = (mstype.float16, mstype.float32)
validator.check_tensor_dtype_valid("x_dtype", x_dtype, valid_dtypes, self.name)
validator.check_tensor_dtype_valid("t_dtype", t_dtype, mstype.int32, self.name)
validator.check_tensor_dtype_valid("w_dtype", w_dtype, valid_dtypes, self.name)
return x_dtype, w_dtype
[docs]class SoftmaxCrossEntropyWithLogits(Primitive):
r"""
Gets the softmax cross-entropy value between logits and labels with one-hot encoding.
The updating formulas of SoftmaxCrossEntropyWithLogits algorithm are as follows,
.. math::
\begin{array}{ll} \\
p_{ij} = softmax(X_{ij}) = \frac{\exp(x_i)}{\sum_{j = 0}^{N-1}\exp(x_j)} \\
loss_{ij} = -\sum_j{Y_{ij} * ln(p_{ij})}
\end{array}
where :math:`X` represents `logits`.
:math:`Y` represents `label`.
:math:`loss` represents `output`.
Inputs:
- **logits** (Tensor) - Input logits, with shape :math:`(N, C)`. Data type must be float16 or float32.
- **labels** (Tensor) - Ground truth labels, with shape :math:`(N, C)`, has the same data type with `logits`.
Outputs:
Tuple of 2 tensors(loss, dlogits), the `loss` shape is :math:`(N,)`,
and the `dlogits` with the same shape as `logits`.
Raises:
TypeError: If dtype of `logits` or `labels` is neither float16 nor float32.
TypeError: If `logits` or `labels` is not a Tensor.
ValueError: If shape of `logits` is not the same as `labels`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> logits = Tensor([[2, 4, 1, 4, 5], [2, 1, 2, 4, 3]], mindspore.float32)
>>> labels = Tensor([[0, 0, 0, 0, 1], [0, 0, 0, 1, 0]], mindspore.float32)
>>> softmax_cross = ops.SoftmaxCrossEntropyWithLogits()
>>> loss, dlogits = softmax_cross(logits, labels)
>>> print(loss)
[0.5899297 0.52374405]
>>> print(dlogits)
[[ 0.02760027 0.20393994 0.01015357 0.20393994 -0.44563377]
[ 0.08015892 0.02948882 0.08015892 -0.4077012 0.21789455]]
"""
@prim_attr_register
def __init__(self):
pass
[docs]class SparseSoftmaxCrossEntropyWithLogits(PrimitiveWithInfer):
r"""
Computes the softmax cross-entropy value between logits and sparse encoding labels.
Sets input logits as `X`, input label as `Y`, output as `loss`. Then,
.. math::
\begin{array}{ll} \\
p_{ij} = softmax(X_{ij}) = \frac{\exp(x_i)}{\sum_{j = 0}^{N-1}\exp(x_j)} \\
loss_{ij} = \begin{cases} -ln(p_{ij}), &j = y_i \cr 0, & j \neq y_i \end{cases} \\
loss = \sum_{ij} loss_{ij}
\end{array}
Args:
is_grad (bool): If true, this operation returns the computed gradient. Default: False.
Inputs:
- **logits** (Tensor) - Input logits, with shape :math:`(N, C)`. Data type must be float16 or float32.
- **labels** (Tensor) - Ground truth labels, with shape :math:`(N)`.
Data type must be int32 or int64.
Outputs:
Tensor, if `is_grad` is False, the output tensor is the value of loss which is a scalar tensor;
if `is_grad` is True, the output tensor is the gradient of input with the same shape as `logits`.
Raises:
TypeError: If `is_grad` is not a bool.
TypeError: If dtype of `logits` is neither float16 nor float32.
TypeError: If dtype of `labels` is neither int32 nor int64.
ValueError: If logits.shape[0] != labels.shape[0].
Supported Platforms:
``GPU`` ``CPU``
Examples:
>>> logits = Tensor([[2, 3, 1, 4, 5], [2, 1, 2, 4, 3]], mindspore.float32)
>>> labels = Tensor([0, 1], mindspore.int32)
>>> sparse_softmax_cross = ops.SparseSoftmaxCrossEntropyWithLogits()
>>> loss = sparse_softmax_cross(logits, labels)
>>> print(loss)
3.4878292
>>> sparse_softmax_cross_grad = ops.SparseSoftmaxCrossEntropyWithLogits(is_grad=True)
>>> loss_grad = sparse_softmax_cross_grad(logits, labels)
>>> print(loss_grad)
[[-0.48415753 0.04306427 0.00582811 0.11706084 0.3182043 ]
[ 0.04007946 -0.4852556 0.04007946 0.2961494 0.10894729]]
"""
@prim_attr_register
def __init__(self, is_grad=False):
"""Initialize SparseSoftmaxCrossEntropyWithLogits."""
validator.check_value_type('is_grad', is_grad, [bool], self.name)
self.init_prim_io_names(inputs=['features', 'labels'], outputs=['output'])
self.is_grad = is_grad
self.add_prim_attr('sens', 1.0)
def infer_shape(self, logits_shape, labels_shape):
validator.check("logits_shape[0]", logits_shape[0], "labels_shape[0]", labels_shape[0], Rel.EQ, self.name)
loss_shape = []
if self.is_grad:
return logits_shape
return loss_shape
def infer_dtype(self, logits_type, labels_type):
validator.check_tensor_dtype_valid("logits", logits_type, (mstype.float16, mstype.float32),
self.name)
validator.check_tensor_dtype_valid("labels", labels_type, (mstype.int32, mstype.int64), self.name)
return logits_type
[docs]class ApplyMomentum(Primitive):
r"""
Optimizer that implements the Momentum algorithm.
Refer to the paper `On the importance of initialization and momentum in deep
learning <https://dl.acm.org/doi/10.5555/3042817.3043064>`_ for more details.
Inputs of `variable`, `accumulation` and `gradient` comply with the implicit type conversion rules
to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Refer to :class:`mindspore.nn.Momentum` for more details about the formula and usage.
Args:
use_locking (bool): Whether to enable a lock to protect the variable and accumulation tensors
from being updated. Default: False.
use_nesterov (bool): Enable Nesterov momentum. Default: False.
gradient_scale (float): The scale of the gradient. Default: 1.0.
Inputs:
- **variable** (Parameter) - Weights to be updated. Data type must be float.
- **accumulation** (Parameter) - Accumulated gradient value by moment weight,
has the same data type with `variable`.
- **learning_rate** (Union[Number, Tensor]) - The learning rate value, must be a float number or
a scalar tensor with float data type.
- **gradient** (Tensor) - Gradient, has the same data type as `variable`.
- **momentum** (Union[Number, Tensor]) - Momentum, must be a float number or
a scalar tensor with float data type.
Outputs:
Tensor, parameters to be updated.
Raises:
TypeError: If the `use_locking` or `use_nesterov` is not a bool or `gradient_scale` is not a float.
RuntimeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
Please refer to the usage in :class:`mindspore.nn.Momentum`.
"""
__mindspore_signature__ = (
sig.make_sig('variable', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('accumulation', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('learning_rate', dtype=sig.sig_dtype.T1),
sig.make_sig('gradient', dtype=sig.sig_dtype.T),
sig.make_sig('momentum', dtype=sig.sig_dtype.T2)
)
@prim_attr_register
def __init__(self, use_nesterov=False, use_locking=False, gradient_scale=1.0):
"""Initialize ApplyMomentum."""
self.use_nesterov = validator.check_bool(use_nesterov, "use_nesterov", self.name)
self.use_locking = validator.check_bool(use_locking, "use_locking", self.name)
validator.check_value_type('gradient_scale', gradient_scale, [float], self.name)
self.init_prim_io_names(inputs=['variable', 'accumulation', 'learning_rate', 'gradient', 'momentum'],
outputs=['output'])
self.add_prim_attr('side_effect_mem', True)
[docs]class SmoothL1Loss(Primitive):
r"""
Refer to :func:`mindspore.ops.smooth_l1_loss` for more detail.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> loss = ops.SmoothL1Loss()
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
[0. 0. 0.5]
"""
@prim_attr_register
def __init__(self, beta=1.0, reduction='none'):
"""Initialize SmoothL1Loss."""
validator.check_value_type('beta', beta, [float], self.name)
validator.check('beta', beta, '', 0, Rel.GT, self.name)
validator.check_string(
reduction, ['none', 'sum', 'mean'], 'reduction', self.name)
self.init_prim_io_names(inputs=['prediction', 'target'], outputs=['output'])
target = context.get_context("device_target")
if reduction != 'none' and target.lower() == "ascend":
raise ValueError(f"Currently Ascend device_target only support `reduction`='none', "
f"but got {reduction}")
[docs]class SoftMarginLoss(Primitive):
r"""
SoftMarginLoss operation.
Creates a criterion that optimizes a two-class classification
logistic loss between input tensor :math:`x` and target tensor :math:`y`
(containing 1 or -1).
.. math::
\text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()}
where :math:`x.nelement()` is the number of elements of x.
Args:
reduction (str): Apply specific reduction method to the output: 'none', 'mean' or 'sum'. Default: "mean".
Inputs:
- **logits** (Tensor) - Predict data. Data type must be float16 or float32.
- **labels** (Tensor) - Ground truth data, with the same type and shape as `logits`.
Outputs:
Tensor or Scalar, if `reduction` is "none", its shape is the same as `logits`.
Otherwise, a scalar value will be returned.
Raises:
TypeError: If `logits` or `labels` is not a Tensor.
TypeError: If dtype of `logits` or `labels` is neither float16 nor float32.
ValueError: If shape of `logits` is not the same as `labels`.
ValueError: If `reduction` is not one of 'none', 'mean' or 'sum'.
Supported Platforms:
``Ascend``
Examples:
>>> loss = ops.SoftMarginLoss()
>>> logits = Tensor(np.array([[0.3, 0.7], [0.5, 0.5]]), mindspore.float32)
>>> labels = Tensor(np.array([[-1, 1], [1, -1]]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
0.6764238
"""
@prim_attr_register
def __init__(self, reduction="mean"):
"""Initialize SoftMarginLoss"""
self.init_prim_io_names(inputs=['predict', 'label'], outputs=['loss'])
self.reduction = validator.check_string(reduction, ['none', 'sum', 'mean'], 'reduction', self.name)
[docs]class L2Loss(Primitive):
r"""
Calculates half of the L2 norm, but do not square the result.
Set input as x and output as loss.
.. math::
loss = \frac{\sum x ^ 2}{2}
Inputs:
- **input_x** (Tensor) - Tensor for computing the L2 norm. Data type must be float16 or float32.
Outputs:
Tensor, has a Scalar Tensor with the same data type as `input_x`.
Raises:
TypeError: If `input_x` is not a Tensor.
TypeError: If dtype of `input_x` is neither float16 nor float32.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float16)
>>> l2_loss = ops.L2Loss()
>>> output = l2_loss(input_x)
>>> print(output)
7.0
"""
@prim_attr_register
def __init__(self):
"""Initialize L2Loss"""
[docs]class RNNTLoss(PrimitiveWithInfer):
"""
Computes the RNNTLoss and its gradient with respect to the softmax outputs.
Args:
blank_label (int): blank label. Default: 0.
Inputs:
- **acts** (Tensor) - Tensor of shape :math:`(B, T, U, V)`. Data type must be float16 or float32.
- **labels** (Tensor) - Tensor of shape :math:`(B, U-1)`. Data type is int32.
- **input_lengths** (Tensor) - Tensor of shape :math:`(B,)`. Data type is int32.
- **label_lengths** (Tensor) - Tensor of shape :math:`(B,)`. Data type is int32.
Outputs:
- **costs** (Tensor) - Tensor of shape :math:`(B,)`. Data type is int32.
- **grads** (Tensor) - Has the same shape and dtype as `acts`.
Raises:
TypeError: If `acts`, `labels`, `input_lengths` or `label_lengths` is not a Tensor.
TypeError: If dtype of `acts` is neither float16 nor float32.
TypeError: If dtype of `labels`, `input_lengths` or `label_lengths` is not int32.
Supported Platforms:
``Ascend``
Examples:
>>> B, T, U, V = 1, 2, 3, 5
>>> blank = 0
>>> acts = np.random.random((B, T, U, V)).astype(np.float32)
>>> labels = np.array([[1, 2]]).astype(np.int32)
>>> input_length = np.array([T] * B).astype(np.int32)
>>> label_length = np.array([len(l) for l in labels]).astype(np.int32)
>>> rnnt_loss = ops.RNNTLoss(blank_label=0)
>>> costs, grads = rnnt_loss(Tensor(acts), Tensor(labels), Tensor(input_length), Tensor(label_length))
>>> print(costs.shape)
(1,)
>>> print(grads.shape)
(1, 2, 3, 5)
"""
@prim_attr_register
def __init__(self, blank_label=0):
"""Initialize RNNTLoss."""
validator.check_value_type('blank_label', blank_label, [int], self.name)
self.init_prim_io_names(inputs=['acts', 'labels', 'input_length', 'label_length'],
outputs=['costs', 'grads'])
def infer_shape(self, acts_shape, labels_shape, input_length_shape, label_length_shape):
validator.check_equal_int(len(acts_shape), 4, 'acts_rank', self.name)
validator.check_equal_int(len(labels_shape), 2, 'labels_rank', self.name)
validator.check_equal_int(len(input_length_shape), 1, 'input_length_rank', self.name)
validator.check_equal_int(len(label_length_shape), 1, 'label_length_rank', self.name)
validator.check('labels shape[0]', labels_shape[0], 'acts shape[0]', acts_shape[0], Rel.EQ, self.name)
validator.check('labels shape[1]', labels_shape[1], 'acts shape[2]-1', acts_shape[2] - 1, Rel.EQ, self.name)
validator.check('input_length size', input_length_shape[0], 'acts shape[0]', acts_shape[0], Rel.EQ, self.name)
validator.check('label_length size', label_length_shape[0], 'acts shape[0]', acts_shape[0], Rel.EQ, self.name)
costs_shape = (acts_shape[0],)
return costs_shape, acts_shape
def infer_dtype(self, acts_type, labels_type, input_length_type, label_length_type):
validator.check_tensor_dtype_valid("acts_type", acts_type, [mstype.float32, mstype.float16], self.name)
tuple(map(partial(validator.check_tensor_dtype_valid,
valid_dtypes=(mstype.int32,), prim_name=self.name),
("labels", "input_length", "label_length"),
(labels_type, input_length_type, label_length_type)))
return acts_type, acts_type
[docs]class SGD(PrimitiveWithCheck):
"""
Computes the stochastic gradient descent. Momentum is optional.
Nesterov momentum is based on the formula from paper `On the importance of
initialization and momentum in deep learning <http://proceedings.mlr.press/v28/sutskever13.html>`_.
Note:
For more details, please refer to :class:`mindspore.nn.SGD`.
Args:
dampening (float): The dampening for momentum. Default: 0.0.
weight_decay (float): Weight decay (L2 penalty). Default: 0.0.
nesterov (bool): Enable Nesterov momentum. Default: False.
Inputs:
- **parameters** (Tensor) - Parameters to be updated. With float16 or float32 data type.
- **gradient** (Tensor) - Gradient, with float16 or float32 data type.
- **learning_rate** (Tensor) - Learning rate, a scalar tensor with float16 or float32 data type.
e.g. Tensor(0.1, mindspore.float32)
- **accum** (Tensor) - Accum(velocity) to be updated. With float16 or float32 data type.
- **momentum** (Tensor) - Momentum, a scalar tensor with float16 or float32 data type.
e.g. Tensor(0.1, mindspore.float32).
- **stat** (Tensor) - States to be updated with the same shape as gradient, with float16 or float32 data type.
Outputs:
Tensor, parameters to be updated.
Raises:
TypeError: If `dampening` or `weight_decay` is not a float.
TypeError: If `nesterov` is not a bool.
TypeError: If `parameters`, `gradient`, `learning_rate`, `accum`, `momentum` or `stat` is not a Tensor.
TypeError: If dtype of `parameters`, `gradient`, `learning_rate`, `accum`, `momentum` or `stat` is neither
float16 nor float32.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> sgd = ops.SGD()
>>> parameters = Tensor(np.array([2, -0.5, 1.7, 4]), mindspore.float32)
>>> gradient = Tensor(np.array([1, -1, 0.5, 2]), mindspore.float32)
>>> learning_rate = Tensor(0.01, mindspore.float32)
>>> accum = Tensor(np.array([0.1, 0.3, -0.2, -0.1]), mindspore.float32)
>>> momentum = Tensor(0.1, mindspore.float32)
>>> stat = Tensor(np.array([1.5, -0.3, 0.2, -0.7]), mindspore.float32)
>>> output = sgd(parameters, gradient, learning_rate, accum, momentum, stat)
>>> print(output)
(Tensor(shape=[4], dtype=Float32,
value= [ 1.98989999e+00, -4.90300000e-01, 1.69520009e+00, 3.98009992e+00]),)
"""
@prim_attr_register
def __init__(self, dampening=0.0, weight_decay=0.0, nesterov=False):
"""Initialize SGD."""
validator.check_value_type("nesterov", nesterov, [bool], self.name)
if nesterov and dampening != 0:
raise ValueError(f"For '{self.name}', the 'dampening' must be 0 when 'nesterov' is True, "
f"but got 'dampening' is {dampening} and 'nesterov' is {nesterov}.")
self.init_prim_io_names(inputs=['parameters', 'gradient', 'learning_rate', 'accum', 'momentum', 'stat'],
outputs=['output'])
self.add_prim_attr('side_effect_mem', True)
def check_shape(self, parameters_shape, gradient_shape, learning_rate_shape,
accum_shape, momentum_shape, stat_shape):
validator.check_int(len(gradient_shape), 0, Rel.GE, f'gradient rank', self.name)
validator.check_int(len(learning_rate_shape), 0, Rel.GE, f'learning rate rank', self.name)
validator.check_int(len(momentum_shape), 0, Rel.GE, f'momentum rank', self.name)
validator.check_int(len(stat_shape), 0, Rel.GE, f'stat rank', self.name)
validator.check("gradient shape", gradient_shape, "stat shape", stat_shape, Rel.EQ, self.name)
def check_dtype(self, parameters_dtype, gradient_dtype, learning_rate_dtype,
accum_dtype, momentum_dtype, stat_dtype):
tuple(map(partial(validator.check_tensor_dtype_valid,
valid_dtypes=(mstype.float16, mstype.float32), prim_name=self.name),
("parameters", "gradient", "learning_rate", "accum", "momentum", "stat"),
(parameters_dtype, gradient_dtype, learning_rate_dtype, accum_dtype, momentum_dtype, stat_dtype)))
[docs]class ApplyRMSProp(PrimitiveWithInfer):
r"""
Optimizer that implements the Root Mean Square prop(RMSProp) algorithm.
Please refer to the usage in source code of :class:`mindspore.nn.RMSProp`.
The updating formulas of ApplyRMSProp algorithm are as follows,
.. math::
\begin{array}{ll} \\
s_{t+1} = \rho s_{t} + (1 - \rho)(\nabla Q_{i}(w))^2 \\
m_{t+1} = \beta m_{t} + \frac{\eta} {\sqrt{s_{t+1} + \epsilon}} \nabla Q_{i}(w) \\
w = w - m_{t+1}
\end{array}
where :math:`w` represents `var`, which will be updated.
:math:`s_{t+1}` represents `mean_square`, :math:`s_{t}` is the last moment of :math:`s_{t+1}`,
:math:`m_{t+1}` represents `moment`, :math:`m_{t}` is the last moment of :math:`m_{t+1}`.
:math:`\rho` represents `decay`. :math:`\beta` is the momentum term, represents `momentum`.
:math:`\epsilon` is a smoothing term to avoid division by zero, represents `epsilon`.
:math:`\eta` represents `learning_rate`. :math:`\nabla Q_{i}(w)` represents `grad`.
.. warning::
Note that in dense implementation of this algorithm, "mean_square" and "moment" will update even if "grad" is 0,
but in this sparse implementation, "mean_square" and "moment" will not update
in iterations during which "grad" is 0.
Args:
use_locking (bool): Whether to enable a lock to protect the variable and accumulation tensors
from being updated. Default: False.
Inputs:
- **var** (Tensor) - Weights to be updated.
- **mean_square** (Tensor) - Mean square gradients, must be the same type as `var`.
- **moment** (Tensor) - Delta of `var`, must be the same type as `var`.
- **learning_rate** (Union[Number, Tensor]) - Learning rate. Must be a float number or
a scalar tensor with float16 or float32 data type.
- **grad** (Tensor) - Gradient, must be the same type as `var`.
- **decay** (float) - Decay rate. Only constant value is allowed.
- **momentum** (float) - Momentum. Only constant value is allowed.
- **epsilon** (float) - Ridge term. Only constant value is allowed.
Outputs:
Tensor, parameters to be updated.
Raises:
TypeError: If `use_locking` is not a bool.
TypeError: If `var`, `mean_square`, `moment` or `decay` is not a Tensor.
TypeError: If `learning_rate` is neither a Number nor a Tensor.
TypeError: If dtype of `decay`, `momentum` or `epsilon` is not float.
TypeError: If dtype of `learning_rate` is neither float16 nor float32.
ValueError: If `decay`, `momentum` or `epsilon` is not a constant value.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.apply_rms_prop = ops.ApplyRMSProp()
... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var")
...
... def construct(self, mean_square, moment, grad, decay, momentum, epsilon, lr):
... out = self.apply_rms_prop(self.var, mean_square, moment, lr, grad, decay, momentum, epsilon)
... return out
...
>>> net = Net()
>>> mean_square = Tensor(np.ones([2, 2]).astype(np.float32))
>>> moment = Tensor(np.ones([2, 2]).astype(np.float32))
>>> grad = Tensor(np.ones([2, 2]).astype(np.float32))
>>> output = net(mean_square, moment, grad, 0.0, 1e-10, 0.001, 0.01)
>>> print(net.var.asnumpy())
[[0.990005 0.990005]
[0.990005 0.990005]]
"""
@prim_attr_register
def __init__(self, use_locking=False):
"""Initialize ApplyRMSProp."""
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
self.init_prim_io_names(inputs=['var', 'mean_square', 'moment', 'learning_rate', 'grad',
'rho', 'momentum', 'epsilon'], outputs=['output'])
self.add_prim_attr('side_effect_mem', True)
[docs]class ApplyCenteredRMSProp(Primitive):
r"""
Optimizer that implements the centered RMSProp algorithm.
Please refer to the usage in source code of :class:`mindspore.nn.RMSProp`.
The updating formulas of ApplyCenteredRMSProp algorithm are as follows,
.. math::
\begin{array}{ll} \\
g_{t+1} = \rho g_{t} + (1 - \rho)\nabla Q_{i}(w) \\
s_{t+1} = \rho s_{t} + (1 - \rho)(\nabla Q_{i}(w))^2 \\
m_{t+1} = \beta m_{t} + \frac{\eta} {\sqrt{s_{t+1} - g_{t+1}^2 + \epsilon}} \nabla Q_{i}(w) \\
w = w - m_{t+1}
\end{array}
where :math:`w` represents `var`, which will be updated.
:math:`g_{t+1}` represents `mean_gradient`, :math:`g_{t}` is the last moment of :math:`g_{t+1}`.
:math:`s_{t+1}` represents `mean_square`, :math:`s_{t}` is the last moment of :math:`s_{t+1}`,
:math:`m_{t+1}` represents `moment`, :math:`m_{t}` is the last moment of :math:`m_{t+1}`.
:math:`\rho` represents `decay`. :math:`\beta` is the momentum term, represents `momentum`.
:math:`\epsilon` is a smoothing term to avoid division by zero, represents `epsilon`.
:math:`\eta` represents `learning_rate`. :math:`\nabla Q_{i}(w)` represents `grad`.
Note:
The difference between `ApplyCenteredRMSProp` and `ApplyRMSProp` is that the former
uses the centered RMSProp algorithm, and the centered RRMSProp algorithm uses an estimate of the centered second
moment(i.e., the variance) for normalization, as opposed to regular RMSProp, which uses the (uncertained)
second moment. This often helps with training, but is slightly more expensive in terms of computation and
memory.
.. warning::
In dense implementation of this algorithm, `mean_gradient`, `mean_square`, and `moment` will update
even if the `grad` is zero. But in this sparse implementation, `mean_gradient`, `mean_square`, and `moment`
will not update in iterations during which the `grad` is zero.
Args:
use_locking (bool): Whether to enable a lock to protect the variable and accumulation tensors
from being updated. Default: False.
Inputs:
- **var** (Tensor) - Weights to be updated.
- **mean_gradient** (Tensor) - Mean gradients, must be the same type as `var`.
- **mean_square** (Tensor) - Mean square gradients, must be the same type as `var`.
- **moment** (Tensor) - Delta of `var`, must be the same type as `var`.
- **grad** (Tensor) - Gradient, must be the same type as `var`.
- **learning_rate** (Union[Number, Tensor]) - Learning rate. Must be a float number or
a scalar tensor with float16 or float32 data type.
- **decay** (float) - Decay rate.
- **momentum** (float) - Momentum.
- **epsilon** (float) - Ridge term.
Outputs:
Tensor, parameters to be updated.
Raises:
TypeError: If `use_locking` is not a bool.
TypeError: If `var`, `mean_gradient`, `mean_square`, `moment` or `grad` is not a Tensor.
TypeError: If `learing_rate` is neither a Number nor a Tensor.
TypeError: If dtype of `learing_rate` is neither float16 nor float32.
TypeError: If `decay`, `momentum` or `epsilon` is not a float.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.apply_centerd_rms_prop = ops.ApplyCenteredRMSProp()
... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var")
...
... def construct(self, mean_grad, mean_square, moment, grad, decay, momentum, epsilon, lr):
... out = self.apply_centerd_rms_prop(self.var, mean_grad, mean_square, moment, grad,
... lr, decay, momentum, epsilon)
... return out
...
>>> net = Net()
>>> mean_grad = Tensor(np.ones([2, 2]).astype(np.float32))
>>> mean_square = Tensor(np.ones([2, 2]).astype(np.float32))
>>> moment = Tensor(np.ones([2, 2]).astype(np.float32))
>>> grad = Tensor(np.ones([2, 2]).astype(np.float32))
>>> output = net(mean_grad, mean_square, moment, grad, 0.0, 1e-10, 0.001, 0.01)
>>> print(net.var.asnumpy())
[[0.68377227 0.68377227]
[0.68377227 0.68377227]]
"""
@prim_attr_register
def __init__(self, use_locking=False):
"""Initialize ApplyCenteredRMSProp."""
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
self.add_prim_attr('side_effect_mem', True)
[docs]class LayerNorm(Primitive):
r"""
Applies the Layer Normalization to the input tensor.
This operator will normalize the input tensor on given axis. LayerNorm is described in the paper
`Layer Normalization <https://arxiv.org/abs/1607.06450>`_.
.. math::
y = \frac{x - mean}{\sqrt{variance + \epsilon}} * \gamma + \beta
where :math:`\gamma` is scale, :math:`\beta` is bias, :math:`\epsilon` is epsilon.
Args:
begin_norm_axis (int): The begin axis of the `input_x` to apply LayerNorm,
the value must be in [-1, rank(input)). Default: 1.
begin_params_axis (int): The begin axis of the parameter input (`gamma`, `beta`) to
apply LayerNorm, the value must be in [-1, rank(input)). Default: 1.
epsilon (float): A value added to the denominator for numerical stability. Default: 1e-7.
Inputs:
- **input_x** (Tensor) - Tensor of shape :math:`(N, \ldots)`.
The input of LayerNorm.
- **gamma** (Tensor) - Tensor of shape :math:`(P_0, \ldots, P_\text{begin_params_axis})`.
The learnable parameter `gamma` as the scale on norm.
- **beta** (Tensor) - Tensor of shape :math:`(P_0, \ldots, P_\text{begin_params_axis})`.
The learnable parameter `beta` as the scale on norm.
Outputs:
tuple[Tensor], tuple of 3 tensors, the normalized input and the updated parameters.
- **output_x** (Tensor) - The normalized input, has the same type and shape as the `input_x`.
The shape is :math:`(N, C)`.
- **mean** (Tensor) - Tensor of shape :math:`(C,)`.
- **variance** (Tensor) - Tensor of shape :math:`(C,)`.
Raises:
TypeError: If `begin_norm_axis` or `begin_params_axis` is not an int.
TypeError: If `epsilon` is not a float.
TypeError: If `input_x`, `gamma` or `beta` is not a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[1, 2, 3], [1, 2, 3]]), mindspore.float32)
>>> gamma = Tensor(np.ones([3]), mindspore.float32)
>>> beta = Tensor(np.ones([3]), mindspore.float32)
>>> layer_norm = ops.LayerNorm()
>>> output, mean, variance = layer_norm(input_x, gamma, beta)
>>> print(output)
[[-0.2247448 1. 2.2247448]
[-0.2247448 1. 2.2247448]]
>>> print(mean)
[[2.]
[2.]]
>>> print(variance)
[[0.6666667]
[0.6666667]]
"""
@prim_attr_register
def __init__(self, begin_norm_axis=1, begin_params_axis=1, epsilon=1e-7):
"""Initialize LayerNorm."""
validator.check_value_type('begin_norm_axis', begin_norm_axis, [int], self.name)
validator.check_value_type('begin_params_axis', begin_params_axis, [int], self.name)
validator.check_value_type('epsilon', epsilon, [float], self.name)
[docs]class L2Normalize(PrimitiveWithInfer):
r"""
L2 Normalization Operator.
This operator will normalize the input using the given axis. The function is shown as follows:
.. math::
\displaylines{{\text{output} = \frac{x}{\sqrt{\text{max}( \sum_{i}^{}\left | x_i \right | ^2, \epsilon)}}}}
where :math:`\epsilon` is epsilon and :math:`\sum_{i}^{}\left | x_i \right | ^2` calculate the sum of squares of
the input `x` along the dimension `axis`.
Args:
axis (Union[list(int), tuple(int), int]): Specify the axis for calculating the L2 norm. Default: 0.
epsilon (float): A small value added for numerical stability. Default: 1e-4.
Inputs:
- **x** (Tensor) - Input to compute the normalization. Tensor of shape :math:`(N, \ldots)`.
Data type must be float16 or float32.
Outputs:
Tensor, with the same type and shape as the `x`.
Raises:
TypeError: If `axis` is not one of the following: list, tuple or int.
TypeError: If `epsilon` is not a float.
TypeError: If `x` is not a Tensor.
TypeError: If dtype of `x` is neither float16 nor float32.
ValueError: If dimension of `x` is not greater than 0.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> l2_normalize = ops.L2Normalize()
>>> x = Tensor(np.random.randint(-256, 256, (2, 3, 4)), mindspore.float32)
>>> output = l2_normalize(x)
>>> print(output.shape)
(2, 3, 4)
"""
@prim_attr_register
def __init__(self, axis=0, epsilon=1e-4):
"""Initialize L2Normalize."""
axis = [axis] if isinstance(axis, int) else axis
validator.check_value_type('axis', axis, [list, tuple], self.name)
validator.check_value_type('epsilon', epsilon, [int, float], self.name)
self.add_prim_attr('axis', axis)
self.init_attrs['axis'] = axis
if len(axis) != 1:
raise TypeError(f"For '{self.name}', the length of 'axis' must be 1, but got {len(axis)}, "
f"later will support multiple axis!")
self.axis = axis
def infer_shape(self, input_x):
dim = len(input_x)
if dim == 0:
raise ValueError(f"For '{self.name}', the dimension of 'x' must be greater than 0, but got {dim}")
validator.check_int_range(self.axis[0], -dim, dim, Rel.INC_LEFT, 'axis value', self.name)
return input_x
def infer_dtype(self, input_x):
validator.check_tensor_dtype_valid("input_x", input_x, [mstype.float16, mstype.float32], self.name)
return input_x
[docs]class DropoutGenMask(Primitive):
"""
The DropoutGenMask interface is deprecated, please use the :class:`mindspore.ops.Dropout` instead.
Supported Platforms:
Deprecated
"""
@deprecated("1.5", "ops.Dropout", False)
@prim_attr_register
def __init__(self, Seed0=0, Seed1=0):
"""Initialize DropoutGenMask."""
self.init_prim_io_names(inputs=['shape', 'keep_prob'], outputs=['output'])
validator.check_value_type("Seed0", Seed0, [int], self.name)
validator.check_value_type("Seed1", Seed1, [int], self.name)
self.add_prim_attr("side_effect_hidden", True)
[docs]class DropoutDoMask(Primitive):
"""
The DropoutDoMask interface is deprecated, please use the :class:`mindspore.ops.Dropout` instead.
Supported Platforms:
Deprecated
"""
@deprecated("1.5", "ops.Dropout", False)
@prim_attr_register
def __init__(self):
pass
[docs]class ResizeBilinear(PrimitiveWithInfer):
r"""
Resizes an image to a certain size using the bilinear interpolation.
The resizing only affects the lower two dimensions which represent the height and width. The input images
can be represented by different data types, but the data types of output images are always float32.
For general resize, refer to :func:`mindspore.ops.interpolate` for more detail.
.. warning::
This interface does not support dynamic shape and is subject to change or deletion,
use :func:`mindspore.ops.interpolate` instead.
Args:
size (Union[tuple[int], list[int]]): A tuple or list of 2 int elements :math:`(new\_height, new\_width)`,
the new size of the images.
align_corners (bool): If true, rescale input by :math:`(new\_height - 1) / (height - 1)`,
which exactly aligns the 4 corners of images and resized images. If false,
rescale by :math:`new\_height / height`. Default: False.
half_pixel_centers (bool): Whether half pixel center. If set to True, `align_corners` should be False.
Default: False.
Inputs:
- **x** (Tensor) - Image to be resized. Input images must be a 4-D tensor with shape
:math:`(batch, channels, height, width)`, with data type of float32 or float16.
Outputs:
Tensor, resized image. 4-D with shape :math:`(batch, channels, new\_height, new\_width)`,
with the same data type as input `x`.
Raises:
TypeError: If `size` is neither a tuple nor list.
TypeError: If `align_corners` is not a bool.
TypeError: If `half_pixel_centers` is not a bool.
TypeError: If `align_corners` and `half_pixel_centers` are all True.
TypeError: If `half_pixel_centers` is True and device_target not Ascend.
TypeError: If dtype of `x` is neither float16 nor float32.
TypeError: If `x` is not a Tensor.
ValueError: If length of shape of `x` is not equal to 4.
Supported Platforms:
``Ascend`` ``CPU`` ``GPU``
Examples:
>>> x = Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mindspore.float32)
>>> resize_bilinear = ops.ResizeBilinear((5, 5))
>>> output = resize_bilinear(x)
>>> print(output)
[[[[1. 2. 3. 4. 5.]
[1. 2. 3. 4. 5.]
[1. 2. 3. 4. 5.]
[1. 2. 3. 4. 5.]
[1. 2. 3. 4. 5.]]]]
"""
@prim_attr_register
def __init__(self, size, align_corners=False, half_pixel_centers=False):
"""Initialize ResizeBilinear."""
validator.check_value_type("size", size, [tuple, list], self.name)
validator.check_equal_int(len(size), 2, "size len", self.name)
for item in size:
validator.check_positive_int(item, 'size item', self.name)
validator.check_value_type("size item", item, int, self.name)
self.align_corners = validator.check_value_type("align_corners", align_corners, [bool], self.name)
self.half_pixel_centers = validator.check_value_type("half_pixel_centers",
half_pixel_centers, [bool], self.name)
if half_pixel_centers and align_corners:
raise ValueError(f"If half_pixel_centers is True, align_corners must be False, but got {align_corners}")
target = context.get_context("device_target")
if half_pixel_centers and target.lower() != "ascend":
raise ValueError(f"Currently `half_pixel_centers`=True only support in Ascend device_target, "
f"but got {target}")
for i, value in enumerate(size):
validator.check_positive_int(value, f'{i}th value of size', self.name)
def infer_shape(self, input_shape):
validator.check("dimension of input", len(input_shape), "", 4, Rel.EQ, self.name)
input_shape = list(input_shape)
batch, channel, _, _ = input_shape
out_shape = [batch, channel]
for i in self.size:
out_shape.append(int(i))
return out_shape
def infer_dtype(self, input_dtype):
validator.check_tensor_dtype_valid('input_dtype', input_dtype, [mstype.float16, mstype.float32],
self.name)
return input_dtype
[docs]class OneHot(Primitive):
r"""
Computes a one-hot tensor.
The locations represented by indices in `indices` take value `on_value`, while all
other locations take value `off_value`.
Note:
If the input indices is rank `N`, the output will have rank `N+1`. The new axis is created at dimension `axis`.
Args:
axis (int): Position to insert the value. e.g. If shape of `indices` is :math:`(N, C)`, and `axis` is -1,
the output shape will be :math:`(N, C, D)`, If `axis` is 0, the output shape will be :math:`(D, N, C)`.
Default: -1.
Inputs:
- **indices** (Tensor) - A tensor of indices. Tensor of shape :math:`(X_0, \ldots, X_n)`.
Data type must be uint8, int32 or int64.
- **depth** (int) - A scalar defining the depth of the one-hot dimension.
- **on_value** (Tensor) - A value to fill in output when `indices[j] = i`.
Support uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64,
bool, complex64, complex128.
- **off_value** (Tensor) - A value to fill in output when `indices[j] != i`.
Has the same data type as `on_value`.
Outputs:
Tensor, one-hot tensor. Tensor of shape :math:`(X_0, \ldots, X_{axis}, \text{depth} ,X_{axis+1}, \ldots, X_n)`.
Raises:
TypeError: If `axis` or `depth` is not an int.
TypeError: If dtype of `indices` is not uint8, int32 or int64.
TypeError: If `indices`, `on_value` or `off_value` is not a Tensor.
ValueError: If `axis` is not in range [-1, len(indices_shape)].
ValueError: If `depth` is less than 0.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> indices = Tensor(np.array([0, 1, 2]), mindspore.int32)
>>> depth, on_value, off_value = 3, Tensor(1.0, mindspore.float32), Tensor(0.0, mindspore.float32)
>>> onehot = ops.OneHot()
>>> output = onehot(indices, depth, on_value, off_value)
>>> print(output)
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
"""
@prim_attr_register
def __init__(self, axis=-1):
"""Initialize OneHot."""
self.init_prim_io_names(inputs=['indices', 'depth', 'on_value', 'off_value'], outputs=['output'])
validator.check_value_type("axis", axis, [int], self.name)
class Gelu(PrimitiveWithInfer):
"""
Same as operator GeLU. Gelu will be deprecated in the future.
Please use GeLU instead.
"""
@deprecated("1.1", "GeLU", True)
@prim_attr_register
def __init__(self):
"""Initialize Gelu"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, input_x):
return input_x
def infer_dtype(self, input_x):
validator.check_tensor_dtype_valid("input_x", input_x, (mstype.float16, mstype.float32), self.name)
return input_x
[docs]class GeLU(Primitive):
r"""
Gaussian Error Linear Units activation function.
GeLU is described in the paper `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_.
And also please refer to `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
<https://arxiv.org/abs/1810.04805>`_.
GeLU is defined as follows:
.. math::
GELU(x_i) = x_i*P(X < x_i)
where :math:`P` is the cumulative distribution function of the standard Gaussian distribution,
:math:`x_i` is the input element.
Inputs:
- **x** (Tensor) - The input of the activation function GeLU, the data type is float16 or float32.
Outputs:
Tensor, with the same type and shape as `x`.
Raises:
TypeError: If `x` is not a Tensor.
TypeError: If dtype of `x` is neither float16 nor float32.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
>>> gelu = ops.GeLU()
>>> result = gelu(x)
>>> print(result)
[0.841192 1.9545976 2.9963627]
"""
@prim_attr_register
def __init__(self):
"""Initialize GeLU"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
class FastGelu(PrimitiveWithInfer):
"""
Same as operator FastGeLU. FastGelu will be deprecated in the future.
Please use FastGeLU instead.
"""
@deprecated("1.1", "FastGeLU", True)
@prim_attr_register
def __init__(self):
"""Initialize FastGelu."""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, input_x):
return input_x
def infer_dtype(self, input_x):
validator.check_tensor_dtype_valid("input_x", input_x, (mstype.float16, mstype.float32), self.name)
return input_x
[docs]class FastGeLU(Primitive):
r"""
Fast Gaussian Error Linear Units activation function.
Refer to :func:`mindspore.ops.fast_gelu` for more detail.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> fast_gelu = ops.FastGeLU()
>>> output = fast_gelu(x)
>>> print(output)
[[-1.5418735e-01 3.9921875e+00 -9.7473649e-06]
[ 1.9375000e+00 -1.0052517e-03 8.9824219e+00]]
"""
@prim_attr_register
def __init__(self):
"""Initialize FastGeLU."""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
[docs]class GetNext(Primitive):
"""
Returns the next element in the dataset queue.
Note:
The GetNext operation needs to be associated with network and it also depends
on the 'dataset' interface, For example, please refer to :class:`mindspore.dataset.MnistDataset` .
it can't be used directly as a single operation.
For details, please refer to :class:`mindspore.connect_network_with_dataset` source code.
Args:
types (list[:class:`mindspore.dtype`]): The type of the outputs.
shapes (list[tuple[int]]): The dimensionality of the outputs.
output_num (int): The output number, length of `types` and `shapes`.
shared_name (str): Queue name to fetch the data.
Inputs:
No inputs.
Outputs:
tuple[Tensor], the output of dataset. The shape is described in `shapes`
and the type is described in `types`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import mindspore
>>> from mindspore import ops
>>> from mindspore import dataset as ds
>>> from mindspore.common import dtype as mstype
>>> data_path = "/path/to/MNIST_Data/train/"
>>> train_dataset = ds.MnistDataset(data_path, num_samples=10)
>>> dataset_helper = mindspore.DatasetHelper(train_dataset, dataset_sink_mode=True)
>>> dataset = dataset_helper.iter.dataset
>>> dataset_types, dataset_shapes = dataset_helper.types_shapes()
>>> queue_name = dataset.__transfer_dataset__.queue_name
>>> get_next = ops.GetNext(dataset_types, dataset_shapes, len(dataset_types), queue_name)
>>> data, label = get_next()
>>> relu = ops.ReLU()
>>> result = relu(data.astype(mstype.float32))
>>> print(result.shape)
(28, 28, 1)
"""
@prim_attr_register
def __init__(self, types, shapes, output_num, shared_name):
"""Initialize GetNext."""
validator.check_value_type("types", types, [list, tuple], self.name)
validator.check_value_type("shapes", shapes, [list, tuple], self.name)
validator.check("types length", len(types), "shapes length", len(shapes), Rel.EQ, self.name)
validator.check_value_type("output_num", output_num, [int], self.name)
[docs]class PReLU(PrimitiveWithInfer):
r"""
Parametric Rectified Linear Unit activation function.
PReLU is described in the paper `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification <https://arxiv.org/abs/1502.01852>`_. Defined as follows:
.. math::
prelu(x_i)= \max(0, x_i) + \min(0, w * x_i),
where :math:`x_i` is an element of a channel of the input, `w` is the weight of the channel.
Note:
Scalar or 1-D input x is not supported on Ascend.
Inputs:
- **x** (Tensor) - The input Tensor of the activation function. The data type is float16 or float32.
The shape is :math:`(N, C, *)` where :math:`*` means, any number of additional dimensions.
- **weight** (Tensor) - Weight Tensor. The data type is float16 or float32.
The weight can only be a vector, and the length is the same as the number of channels C of the `input_x`.
On GPU devices, when the input is a scalar, the shape is 1.
Outputs:
Tensor, with the same type as `x`.
For detailed information, please refer to :class:`mindspore.nn.PReLU`.
Raises:
TypeError: If dtype of `x` or `weight` is neither float16 nor float32.
TypeError: If the `x` or the `weight` is not a Tensor.
ValueError: If the `x` is a 0-D or 1-D Tensor on Ascend.
ValueError: If the `weight` is not a 1-D Tensor.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.prelu = ops.PReLU()
... def construct(self, x, weight):
... result = self.prelu(x, weight)
... return result
...
>>> x = Tensor(np.arange(-6, 6).reshape((2, 3, 2)), mindspore.float32)
>>> weight = Tensor(np.array([0.1, 0.6, -0.3]), mindspore.float32)
>>> net = Net()
>>> output = net(x, weight)
>>> print(output)
[[[-0.60 -0.50]
[-2.40 -1.80]
[ 0.60 0.30]]
[[ 0.00 1.00]
[ 2.00 3.00]
[ 4.0 5.00]]]
"""
@prim_attr_register
def __init__(self):
pass
def infer_shape(self, input_x_shape, weight_shape):
input_x_dim = len(input_x_shape)
if input_x_dim in (0, 1):
if context.get_context("device_target") == "Ascend":
raise ValueError(f"For '{self.name}', the dimension of 'x' can not be 0-D or 1-D when the platform is "
f"\"Ascend\", but got dimension of 'x' is {input_x_dim}.")
channel_num = 1
else:
channel_num = input_x_shape[1]
weight_dim = len(weight_shape)
if weight_dim != 1:
raise ValueError(f"For '{self.name}', the dimension of 'weight' must be 1, while got {weight_dim}.")
if weight_shape[0] != 1 and weight_shape[0] != channel_num:
raise ValueError(f"For '{self.name}', the first dimension of 'weight' must be (1,) or "
f"it must be equal to number of channels: {channel_num}, but got {weight_shape}")
return input_x_shape
def infer_dtype(self, input_x_dtype, weight_dtype):
valid_dtypes = (mstype.float16, mstype.float32)
args = {"input_x": input_x_dtype, "weight": weight_dtype}
if context.get_context("device_target") == "GPU":
validator.check_tensors_dtypes_same_and_valid(args, valid_dtypes, self.name)
else:
validator.check_tensor_dtype_valid("input_x", input_x_dtype, valid_dtypes, self.name)
validator.check_tensor_dtype_valid("weight", weight_dtype, valid_dtypes, self.name)
return input_x_dtype
[docs]class LSTM(PrimitiveWithInfer):
"""
Performs the Long Short-Term Memory (LSTM) on the input.
For detailed information, please refer to :class:`mindspore.nn.LSTM`.
Args:
input_size (int): Number of features of input.
hidden_size (int): Number of features of hidden layer.
num_layers (int): Number of layers of stacked LSTM.
has_bias (bool): Whether the cell has bias `b_ih` and `b_hh`.
bidirectional (bool): Specifies whether it is a bidirectional LSTM.
dropout (float): If not 0, append `Dropout` layer on the outputs of each
LSTM layer except the last layer. The range of dropout is [0.0, 1.0].
Inputs:
- **input** (Tensor) - Tensor of shape (seq_len, batch_size, `input_size`) or
(batch_size, seq_len, `input_size`).
- **h** (tuple) - Tensor of shape (num_directions * `num_layers`, batch_size, `hidden_size`).
- **c** (tuple) - Tensor of shape (num_directions * `num_layers`, batch_size, `hidden_size`).
- **w** (Tensor) - A weight Tensor.
Outputs:
Tuple, a tuple contains (`output`, `h_n`, `c_n`, `reserve`, `state`).
- **output** (Tensor) - Tensor of shape (seq_len, batch_size, num_directions * `hidden_size`).
- **h_n** (Tensor) - Tensor of shape (num_directions * `num_layers`, batch_size, `hidden_size`).
- **c_n** (Tensor) - Tensor of shape (num_directions * `num_layers`, batch_size, `hidden_size`).
- **reserve** (Tensor) - Tensor of shape (r, 1).
- **state** (Tensor) - Random number generator state and its shape is (s, 1).
Raises:
TypeError: If `input_size`, `hidden_size` or `num_layers` is not an int.
TypeError: If `has_bias` or `bidirectional` is not a bool.
TypeError: If `dropout` is not a float.
ValueError: If `dropout` is not in range [0.0, 1.0].
Supported Platforms:
``GPU`` ``CPU``
Examples:
>>> input_size = 10
>>> hidden_size = 2
>>> num_layers = 1
>>> seq_len = 5
>>> batch_size = 2
>>>
>>> net = ops.LSTM(input_size, hidden_size, num_layers, True, False, 0.0)
>>> input_tensor = Tensor(np.ones([seq_len, batch_size, input_size]).astype(np.float32))
>>> h0 = Tensor(np.ones([num_layers, batch_size, hidden_size]).astype(np.float32))
>>> c0 = Tensor(np.ones([num_layers, batch_size, hidden_size]).astype(np.float32))
>>> w = Tensor(np.ones([112, 1, 1]).astype(np.float32))
>>> output, hn, cn, _, _ = net(input_tensor, h0, c0, w)
>>> print(output)
[[[0.9640267 0.9640267 ]
[0.9640267 0.9640267 ]]
[[0.9950539 0.9950539 ]
[0.9950539 0.9950539 ]]
[[0.99932843 0.99932843]
[0.99932843 0.99932843]]
[[0.9999084 0.9999084 ]
[0.9999084 0.9999084 ]]
[[0.9999869 0.9999869 ]
[0.9999869 0.9999869 ]]]
"""
@prim_attr_register
def __init__(self, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout):
"""Initialize LSTM."""
self.input_size = validator.check_positive_int(input_size, "input_size", self.name)
self.hidden_size = validator.check_positive_int(hidden_size, "hidden_size", self.name)
self.num_layers = validator.check_positive_int(num_layers, "num_layers", self.name)
self.has_bias = validator.check_value_type("has_bias", has_bias, (bool,), self.name)
self.bidirectional = validator.check_value_type("bidirectional", bidirectional, (bool,), self.name)
self.dropout = validator.check_value_type("dropout", dropout, [float], self.name)
self.dropout = validator.check_float_range(dropout, 0, 1, Rel.INC_BOTH, 'dropout', self.name)
if bidirectional:
self.num_directions = 2
else:
self.num_directions = 1
def infer_shape(self, x_shape, h_shape, c_shape, w_shape):
validator.check_equal_int(len(x_shape), 3, "x rank", self.name)
validator.check_equal_int(x_shape[2], self.input_size, "x[2]", self.name)
# h and c should be same shape
validator.check_equal_int(len(h_shape), 3, "h rank", self.name)
validator.check("h_shape", h_shape, "c_shape", c_shape, Rel.EQ, self.name)
validator.check_int(h_shape[0], self.num_layers * self.num_directions, Rel.EQ, "h[0]", self.name)
validator.check_equal_int(h_shape[1], x_shape[1], "h[1]", self.name)
validator.check_int(h_shape[2], self.hidden_size, Rel.EQ, "h[2]", self.name)
y_shape = (x_shape[0], x_shape[1], self.hidden_size * self.num_directions)
# set arbitrary shape for reserved space
reserved_shape = (1, 1)
state_shape = (1, 1)
return y_shape, h_shape, c_shape, reserved_shape, state_shape
def infer_dtype(self, x_dtype, h_dtype, c_dtype, w_dtype):
args = {'x': x_dtype, 'h': h_dtype, 'c': c_dtype, 'w': w_dtype}
validator.check_tensors_dtypes_same_and_valid(args, (mstype.float32, mstype.float16), self.name)
return x_dtype, x_dtype, x_dtype, x_dtype, x_dtype
[docs]class SigmoidCrossEntropyWithLogits(Primitive):
r"""
Uses the given logits to compute sigmoid cross entropy between the logits and the label.
Measures the distribution error in discrete classification tasks where each class is independent
and not mutually exclusive using cross entropy loss.
Sets input logits as :math:`X`, input label as :math:`Y`, output as :math:`loss`. Then,
.. math::
\begin{array}{ll} \\
p_{ij} = sigmoid(X_{ij}) = \frac{1}{1 + e^{-X_{ij}}} \\
loss_{ij} = -[Y_{ij} * ln(p_{ij}) + (1 - Y_{ij})ln(1 - p_{ij})]
\end{array}
Inputs:
- **logits** (Tensor) - Input logits. Tensor of shape :math:`(N, *)` where :math:`*` means, any number
of additional dimensions.
- **label** (Tensor) - Ground truth label. With the same shape and type as `logits`.
Outputs:
Tensor, with the same shape and type as input `logits`.
Raises:
TypeError: If `logits` or `label` is not a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32))
>>> labels = Tensor(np.array([[0.3, 0.8, 1.2], [-0.6, 0.1, 2.2]]).astype(np.float32))
>>> sigmoid = ops.SigmoidCrossEntropyWithLogits()
>>> output = sigmoid(logits, labels)
>>> print(output)
[[ 0.6111007 0.5032824 0.26318604]
[ 0.58439666 0.5530153 -0.4368139 ]]
"""
@prim_attr_register
def __init__(self):
"""Initialize SigmoidCrossEntropyWithLogits"""
self.init_prim_io_names(inputs=['predict', 'target'], outputs=['loss'])
[docs]class BCEWithLogitsLoss(PrimitiveWithInfer):
r"""
Adds sigmoid activation function to input `logits`, and uses the given logits to compute binary cross entropy
between the logits and the label.
Sets input logits as :math:`X`, input label as :math:`Y`, input weight as :math:`W`, output as :math:`L`. Then,
.. math::
\begin{array}{ll} \\
p_{ij} = sigmoid(X_{ij}) = \frac{1}{1 + e^{-X_{ij}}} \\
L_{ij} = -[Y_{ij} * log(p_{ij}) + (1 - Y_{ij})log(1 - p_{ij})]
\end{array}
:math:`i` indicates the :math:`i^{th}` sample, :math:`j` indicates the category. Then,
.. math::
\ell(x, y) = \begin{cases}
L, & \text{if reduction} = \text{'none';}\\
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
:math:`\ell` indicates the method of calculating the loss. There are three methods:
the first method is to provide the loss value directly,
the second method is to calculate the average value of all losses,
and the third method is to calculate the sum of all losses.
This operator will multiply the output by the corresponding weight.
The tensor weight assigns different weights to each piece of data in the batch,
and the tensor pos_weight adds corresponding weights to the positive examples of each category.
In addition, it can trade off recall and precision by adding weights to positive examples.
In the case of multi-label classification the loss can be described as:
.. math::
\begin{array}{ll} \\
p_{ij,c} = sigmoid(X_{ij,c}) = \frac{1}{1 + e^{-X_{ij,c}}} \\
L_{ij,c} = -[P_{c}Y_{ij,c} * log(p_{ij,c}) + (1 - Y_{ij,c})log(1 - p_{ij,c})]
\end{array}
where c is the class number (c>1 for multi-label binary classification, c=1 for single-label binary classification),
n is the number of the sample in the batch and :math:`p_c` is the weight of the positive answer for the class c.
:math:`p_c>1` increases the recall, :math:`p_c<1` increases the precision.
Args:
reduction (str): Type of reduction to be applied to loss. The optional values are 'mean', 'sum', and 'none',
not case sensitive. If 'none', do not perform reduction. Default: 'mean'.
Inputs:
- **logits** (Tensor) - Input logits. Data type must be float16 or float32.
Tensor of shape :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **label** (Tensor) - Ground truth label, has the same shape as `logits`.
Data type must be float16 or float32.
- **weight** (Tensor) - A rescaling weight applied to the loss of each batch element. It can be
broadcast to a tensor with shape of `logits`. Data type must be float16 or float32.
- **pos_weight** (Tensor) - A weight of positive examples. Must be a vector with length equal to the
number of classes. It can be broadcast to a tensor with shape of `logits`.
Data type must be float16 or float32.
Outputs:
Tensor or Scalar, if `reduction` is `none`, it's a tensor with the same shape and type as input `logits`.
Otherwise, the output is a scalar.
Raises:
TypeError: If any input is not Tensor.
TypeError: If data type of any input is neither float16 nor float32.
TypeError: If data type of `reduction` is not string.
ValueError: If `weight` or `pos_weight` can not be broadcast to a tensor with shape of `logits`.
ValueError: If `reduction` is not one of `none`, `mean` or `sum`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]), mindspore.float32)
>>> label = Tensor(np.array([[0.3, 0.8, 1.2], [-0.6, 0.1, 2.2]]), mindspore.float32)
>>> weight = Tensor(np.array([1.0, 1.0, 1.0]), mindspore.float32)
>>> pos_weight = Tensor(np.array([1.0, 1.0, 1.0]), mindspore.float32)
>>> loss = ops.BCEWithLogitsLoss()
>>> output = loss(logits, label, weight, pos_weight)
>>> print(output)
0.3463612
"""
@prim_attr_register
def __init__(self, reduction='mean'):
"""Initialize BCEWithLogitsLoss"""
super().__init__("BCEWithLogitsLoss")
self.reduction = validator.check_string(reduction, ['none', 'sum', 'mean'], 'reduction', self.name)
[docs]class Pad(PrimitiveWithInfer):
r"""
Pads the input tensor according to the paddings.
Refer to :func:`mindspore.ops.pad` for more detail. Use :func:`mindspore.ops.pad` instead if `paddings` has
negative values.
Args:
paddings (tuple): The shape of parameter `paddings` is (N, 2). N is the rank of input data. All elements of
paddings are int type. For the input in `D` th dimension, paddings[D, 0] indicates how many sizes to be
extended ahead of the input tensor in the `D` th dimension, and paddings[D, 1] indicates how many sizes to
be extended behind the input tensor in the `D` th dimension.
Inputs:
- **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
additional dimensions.
Outputs:
Tensor, the tensor after padding.
Raises:
TypeError: If `paddings` is not a tuple.
TypeError: If `input_x` is not a Tensor.
ValueError: If shape of `paddings` is not :math:`(N, 2)`.
ValueError: If paddings.size is not equal to 2 * len(input_x).
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> pad_op = ops.Pad(((1, 2), (2, 1)))
>>> output = pad_op(input_x)
>>> print(output)
[[ 0. 0. 0. 0. 0. 0. ]
[ 0. 0. -0.1 0.3 3.6 0. ]
[ 0. 0. 0.4 0.5 -3.2 0. ]
[ 0. 0. 0. 0. 0. 0. ]
[ 0. 0. 0. 0. 0. 0. ]]
"""
@prim_attr_register
def __init__(self, paddings):
"""Initialize Pad"""
self.init_prim_io_names(inputs=['x'], outputs=['y'])
if not isinstance(paddings, tuple):
raise TypeError(f"For '{self.name}', the type of 'paddings' must be tuple, "
f"but got {type(paddings)}.")
for item in paddings:
if len(item) != 2:
raise ValueError(f"For '{self.name}', the shape of 'paddings' must be (n, 2), "
f"but got {paddings}.")
self.paddings = paddings
def infer_shape(self, x_shape):
validator.check_int(len(self.paddings), len(x_shape), Rel.EQ, 'paddings.shape', self.name)
paddings = np.array(self.paddings)
if not np.all(paddings >= 0):
raise ValueError(f"For '{self.name}', all elements of paddings must be >= 0.")
y_shape = ()
for i in range(int(paddings.size / 2)):
y_shape += ((x_shape[i] + paddings[i, 0] + paddings[i, 1]),)
return y_shape
def infer_dtype(self, x_dtype):
validator.check_subclass("input_x", x_dtype, mstype.tensor, self.name)
return x_dtype
class PadV3(Primitive):
"""
Pads the input tensor according to the paddings, mode and paddings_contiguous.
Args:
mode (str): An optional string, Defaults to "constant", indicates padding mode,
support "constant", "reflect", "edge", Defaults to "constant".
paddings_contiguous (bool): An optional bool value, Defaults to True.
If true, paddings is arranged as [begin0, end0, begin1, end1, ...]
If false, paddings is arranged as [begin0, begin1, ..., end1, end2, ...]
Inputs:
- **x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
additional dimensions.
- **paddings** (Tensor) - The paddings tensor of type int32 or int64. The value of `paddings` is a tuple.
- **constant_value** (Union[Number, Tensor], optional) - Padding value in 'constant' mode.
Outputs:
Tensor, the tensor after padding.
Raises:
TypeError: If `x` or `paddings` is not a Tensor.
TypeError: If `padding_contiguous` is not a bool.
ValueError: If `mode` is not a str or not in support modes.
ValueError: If the element's number of paddings not be even.
ValueError: If the element's number of paddings is more than 6.
ValueError: If `mode` is constant or edge, input dims bigger than 5.
ValueError: If `mode` is reflect, input dims bigger than 4.
Supported Platforms:
``GPU``
Examples:
>>> # case1: mode="reflect", paddings_contiguous=True
>>> class Net(nn.Cell):
... def __init__(self, mode, paddings_contiguous):
... super(Net, self).__init__()
... self.pad = ops.PadV3(mode=mode, paddings_contiguous=paddings_contiguous)
... self.paddings = Tensor([1, 1])
... def construct(self, x):
... return self.pad(x, self.paddings)
...
>>> x = Tensor([[[0., 1.]]])
>>> pad = Net(mode="reflect", paddings_contiguous=True)
>>> output = pad(x)
>>> print(output)
[[[1., 0., 1., 0.]]]
>>> # case2: mode="constant", padding_contigous=False
>>> class Net(nn.Cell):
... def __init__(self, mode, paddings_contiguous):
... super(Net, self).__init__()
... self.pad = ops.PadV3(mode=mode, paddings_contiguous=paddings_contiguous)
... self.paddings = Tensor([1, 0, 1, 0])
... self.value = 1.5
... def construct(self, x):
... return self.pad(x, self.paddings, self.value)
...
>>> x = Tensor([[0., 1., 2.]])
>>> pad = Net(mode="constant", paddings_contiguous=False)
>>> output = pad(x)
>>> print(output)
[[[1.5, 0., 1., 2., 1.5]]])
"""
@prim_attr_register
def __init__(self, mode='constant', paddings_contiguous=True):
"""Initialize PadV3"""
self.init_prim_io_names(inputs=['x', 'paddings', 'constant_value'], outputs=['y'])
validator.check_string(mode, ['constant', 'reflect', 'edge'], 'mode', self.name)
validator.check_bool(paddings_contiguous, "paddings_contiguous", self.name)
self.mode = mode
self.set_const_input_indexes([1])
self.paddings_contiguous = paddings_contiguous
[docs]class MirrorPad(PrimitiveWithInfer):
"""
Pads the input tensor according to the paddings and mode.
Args:
mode (str): Specifies the padding mode. The optional values are "REFLECT" and "SYMMETRIC".
Default: "REFLECT".
Inputs:
- **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
additional dimensions.
- **paddings** (Tensor) - The paddings tensor. The value of `paddings` is a matrix(list),
and its shape is (N, 2). N is the rank of input data. All elements of paddings
are int type. For the input in the `D` th dimension, paddings[D, 0] indicates how many sizes to be
extended ahead of the input tensor in the `D` th dimension, and paddings[D, 1] indicates how many sizes to
be extended behind the input tensor in the `D` th dimension.
Outputs:
Tensor, the tensor after padding.
- If `mode` is "REFLECT", it uses a way of symmetrical copying through the axis of symmetry to fill in.
If the `input_x` is [[1,2,3], [4,5,6], [7,8,9]] and `paddings` is [[1,1], [2,2]], then the
`Outputs` is [[6,5,4,5,6,5,4], [3,2,1,2,3,2,1], [6,5,4,5,6,5,4], [9,8,7,8,9,8,7], [6,5,4,5,6,5,4]].
For a more intuitive understanding, please see the example below.
- If `mode` is "SYMMETRIC", the filling method is similar to the "REFLECT". It is also copied
according to the symmetry axis, except that it includes the symmetry axis. If the `input_x`
is [[1,2,3], [4,5,6], [7,8,9]] and `paddings` is [[1,1], [2,2]], then the `Outputs` is
[[2,1,1,2,3,3,2], [2,1,1,2,3,3,2], [5,4,4,5,6,6,5], [8,7,7,8,9,9,8], [8,7,7,8,9,9,8]].
For a more intuitive understanding, please see the example below.
Raises:
TypeError: If `input_x` or `paddings` is not a Tensor.
TypeError: If `mode` is not a str.
ValueError: If paddings.size is not equal to 2 * len(input_x).
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> from mindspore import Tensor, nn, ops
>>> # case1: mode="REFLECT"
>>> class Net(nn.Cell):
... def __init__(self, mode):
... super(Net, self).__init__()
... self.pad = ops.MirrorPad(mode=mode)
... self.paddings = Tensor([[1, 1], [2, 2]])
... def construct(self, input_x):
... return self.pad(input_x, self.paddings)
...
>>> input_x = Tensor([[1,2,3], [4,5,6], [7,8,9]])
>>> pad = Net("REFLECT")
>>> output = pad(input_x)
>>> print(output)
[[6 5 4 5 6 5 4]
[3 2 1 2 3 2 1]
[6 5 4 5 6 5 4]
[9 8 7 8 9 8 7]
[6 5 4 5 6 5 4]]
>>> # case2: mode="SYMMETRIC"
>>> pad = Net("SYMMETRIC")
>>> output = pad(input_x)
>>> print(output)
[[2 1 1 2 3 3 2]
[2 1 1 2 3 3 2]
[5 4 4 5 6 6 5]
[8 7 7 8 9 9 8]
[8 7 7 8 9 9 8]]
"""
@prim_attr_register
def __init__(self, mode='REFLECT'):
"""Initialize Pad"""
validator.check_string(mode, ['REFLECT', 'SYMMETRIC'], 'mode', self.name)
self.mode = mode
self.set_const_input_indexes([1])
def __infer__(self, input_x, paddings):
validator.check_subclass("input_x", input_x['dtype'], mstype.tensor, self.name)
validator.check_subclass("paddings", paddings['dtype'], mstype.tensor, self.name)
x_shape = list(input_x['shape'])
if paddings['value'] is None:
raise ValueError(f"For '{self.name}', paddings must be a Tensor with type of int64, "
f"but got {paddings['value']}.")
paddings_value = paddings['value'].asnumpy()
paddings_size = paddings_value.size
validator.check_int(paddings_size, len(x_shape) * 2, Rel.EQ, 'paddings.shape', self.name)
if not np.all(paddings_value >= 0):
raise ValueError(f"For '{self.name}', all elements of 'paddings' must be >= 0.")
adjust = 0
if self.mode == 'SYMMETRIC':
adjust = 1
for i in range(0, int(paddings_size / 2)):
if (paddings_value[i, 0] >= x_shape[i] + adjust) or (paddings_value[i, 1] >= x_shape[i] + adjust):
msg = "x_shape[D] + 1" if adjust == 1 else "x_shape[D]"
paddings_info_value = paddings['value'].asnumpy()
raise ValueError(f"For '{self.name}', both paddings[D, 0] and paddings[D, 1] must be less than {msg}, "
f"but got paddings[{i}, 0]: {paddings_info_value[i, 0]}, "
f"paddings[{i}, 1]: {paddings_info_value[i, 1]}, x_shape[{i}]: {x_shape[i]}.")
y_shape = ()
for i in range(0, int(paddings_size / 2)):
y_shape += ((x_shape[i] + paddings_value[i, 0] + paddings_value[i, 1]),)
return {'shape': y_shape,
'dtype': input_x['dtype'],
'value': None}
[docs]class ComputeAccidentalHits(PrimitiveWithCheck):
r"""
Compute accidental hits of sampled classes which match target classes.
When a target class matches the sample class, we call it "accidental hit".
The result of calculating accidental hits contain three parts (index, id, weight),
where index represents the row number in true_classes, and id represents the position in sampled_candidates,
the weight is FLOAT_MAX. FLOAT_MAX indicates the max value in the type of Float
Args:
num_true (int): The number of target classes per training example. Default: 1.
Inputs:
- **true_classes** (Tensor) - The target classes. With data type of int32 or int64
and shape :math:`(batch\_size, num\_true)`.
- **sampled_candidates** (Tensor) - The Candidate sampling results of operators, types of training samples,
with data type of int32 or int64 and shape :math:`(num\_sampled, )`.
Outputs:
Tuple of 3 Tensors.
- **indices** (Tensor) - A Tensor with shape :math:`(num\_accidental\_hits, )`,
with the same type as `true_classes`.
- **ids** (Tensor) - A Tensor with shape :math:`(num\_accidental\_hits, )`,
with the same type as `true_classes`.
- **weights** (Tensor) - A Tensor with shape :math:`(num\_accidental\_hits, )`, with the type float32.
Raises:
TypeError: If dtype of `num_true` is not int.
TypeError: If `true_classes` or `sampled_candidates` is not a Tensor.
TypeError: If dtype of `true_classes` or `sampled_candidates` is neither int32 nor int64.
Supported Platforms:
``Ascend``
Examples:
>>> true_classes = np.array([[1, 2], [0, 4], [3, 3]])
>>> sampled_candidates = np.array([0, 1, 2, 3, 4])
>>> sampler = ops.ComputeAccidentalHits(2)
>>> indices, ids, weights = sampler(Tensor(true_classes), Tensor(sampled_candidates))
>>> print(indices, ids, weights)
[0 0 1 1 2 2]
[1 2 0 4 3 3]
[-3.4028235e+38 -3.4028235e+38 -3.4028235e+38 -3.4028235e+38 -3.4028235e+38 -3.4028235e+38]
"""
@prim_attr_register
def __init__(self, num_true=1):
"""Initialize ComputeAccidentalHits"""
self.init_prim_io_names(inputs=['true_classes', 'sampled_candidates'],
outputs=['indices', 'ids', 'weights'])
validator.check_value_type("num_true", num_true, [int], self.name)
validator.check_number("num_true", num_true, 1, Rel.GE, self.name)
self.num_true = num_true
def check_shape(self, true_classes_shape, sampled_candidates_shape):
validator.check_int(len(true_classes_shape), 2, Rel.EQ, 'dim of true_classes', self.name)
validator.check_int(len(sampled_candidates_shape), 1, Rel.EQ, 'dim of sampled_candidates', self.name)
validator.check("true_classes shape[1]", true_classes_shape[1], "num_true", self.num_true, Rel.EQ, self.name)
indices_len = -1
return (indices_len,), (indices_len,), (indices_len,)
def check_dtype(self, true_classes_type, sampled_candidates_type):
validator.check_subclass("true_classes_type", true_classes_type, mstype.tensor, self.name)
validator.check_subclass("sampled_candidates_type", sampled_candidates_type, mstype.tensor, self.name)
valid_types = (mstype.int32, mstype.int64)
validator.check_tensor_dtype_valid("true_classes_type", true_classes_type, valid_types, self.name)
validator.check_tensor_dtype_valid("sampled_candidates_type", sampled_candidates_type, valid_types, self.name)
weights_type = mstype.float32
return true_classes_type, true_classes_type, weights_type
[docs]class ROIAlign(PrimitiveWithInfer):
r"""
Computes the Region of Interest (RoI) Align operator.
The operator computes the value of each sampling point by bilinear interpolation from the nearby grid points on the
feature map. No quantization is performed on any coordinates involved in the RoI, its bins, or the sampling
points. The details of (RoI) Align operator are described in `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_.
Args:
pooled_height (int): The output features height.
pooled_width (int): The output features width.
spatial_scale (float): A scaling factor that maps the raw image coordinates to the input
feature map coordinates. Suppose the height of a RoI is `ori_h` in the raw image and `fea_h` in the
input feature map, the `spatial_scale` must be `fea_h / ori_h`.
sample_num (int): Number of sampling points. Default: 2.
roi_end_mode (int): Number must be 0 or 1. If roi_end_mode=0, use the legacy implementation.
If roi_end_mode=1, end pixel of the roi_box will be shifted by +1*spatial_scale. Default: 1.
Inputs:
- **features** (Tensor) - The input features, whose shape must be :math:`(N, C, H, W)`.
- **rois** (Tensor) - The shape is :math:`(rois\_n, 5)`. With data type of float16 or float32.
`rois_n` represents the number of RoI. The size of the second dimension must be `5` and the `5` colunms
are :math:`(image\_index, top\_left\_x, top\_left\_y, bottom\_right\_x, bottom\_right\_y)`.
`image_index` represents the index of image. `top_left_x` and `top_left_y` represent the `x, y`
coordinates of the top left corner of corresponding RoI, respectively. `bottom_right_x` and `bottom_right_y`
represent the `x, y` coordinates of the bottom right corner of corresponding RoI, respectively.
Outputs:
Tensor, the shape is :math:`(rois\_n, C, pooled\_height, pooled\_width)`.
Raises:
TypeError: If `pooled_height`, `pooled_width`, `sample_num` or `roi_end_mode` is not an int.
TypeError: If `spatial_scale` is not a float.
TypeError: If `features` or `rois` is not a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> features = Tensor(np.array([[[[1., 2.], [3., 4.]]]]), mindspore.float32)
>>> rois = Tensor(np.array([[0, 0.2, 0.3, 0.2, 0.3]]), mindspore.float32)
>>> roi_align = ops.ROIAlign(2, 2, 0.5, 2)
>>> output = roi_align(features, rois)
>>> print(output)
[[[[1.775 2.025]
[2.275 2.525]]]]
"""
@prim_attr_register
def __init__(self, pooled_height, pooled_width, spatial_scale, sample_num=2, roi_end_mode=1):
"""Initialize ROIAlign"""
validator.check_value_type("pooled_height", pooled_height, [int], self.name)
validator.check_value_type("pooled_width", pooled_width, [int], self.name)
validator.check_value_type("spatial_scale", spatial_scale, [float], self.name)
validator.check_value_type("sample_num", sample_num, [int], self.name)
validator.check_value_type("roi_end_mode", roi_end_mode, [int], self.name)
validator.check_int_range(roi_end_mode, 0, 1, Rel.INC_BOTH, "roi_end_mode", self.name)
self.pooled_height = pooled_height
self.pooled_width = pooled_width
self.spatial_scale = spatial_scale
self.sample_num = sample_num
self.roi_end_mode = roi_end_mode
def infer_shape(self, inputs_shape, rois_shape):
validator.check("input shape rank", len(inputs_shape), "", 4, Rel.LE, self.name)
return [rois_shape[0], inputs_shape[1], self.pooled_height, self.pooled_width]
def infer_dtype(self, inputs_type, rois_type):
valid_dtypes = (mstype.float16, mstype.float32)
validator.check_tensor_dtype_valid("inputs_type", inputs_type, valid_dtypes, self.name)
validator.check_tensor_dtype_valid("rois_type", rois_type, valid_dtypes, self.name)
return inputs_type
[docs]class Adam(Primitive):
r"""
Updates gradients by the Adaptive Moment Estimation (Adam) algorithm.
The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
For more details, please refer to :class:`mindspore.nn.Adam`.
The updating formulas are as follows,
.. math::
\begin{array}{ll} \\
m = \beta_1 * m + (1 - \beta_1) * g \\
v = \beta_2 * v + (1 - \beta_2) * g * g \\
l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\
w = w - l * \frac{m}{\sqrt{v} + \epsilon}
\end{array}
:math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents
`gradient`, :math:`l` represents scaling factor `lr`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`,
:math:`t` represents updating step while :math:`beta_1^t(\beta_1^{t})` and :math:`beta_2^t(\beta_2^{t})`
represent `beta1_power` and `beta2_power`, :math:`\alpha` represents `learning_rate`, :math:`w` represents `var`,
:math:`\epsilon` represents
`epsilon`.
Args:
use_locking (bool): Whether to enable a lock to protect variable tensors from being updated.
If true, updates of the var, m, and v tensors will be protected by a lock.
If false, the result is unpredictable. Default: False.
use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
If true, update the gradients using NAG.
If false, update the gradients without using NAG. Default: False.
Inputs:
- **var** (Tensor) - Weights to be updated. The shape is :math:`(N, *)` where :math:`*` means,
any number of additional dimensions. The data type can be float16 or float32.
- **m** (Tensor) - The 1st moment vector in the updating formula,
the shape and data type value should be the same as `var`.
- **v** (Tensor) - the 2nd moment vector in the updating formula,
the shape and data type value should be the same as `var`. Mean square gradients with the same type as `var`.
- **beta1_power** (float) - :math:`beta_1^t(\beta_1^{t})` in the updating formula,
the data type value should be the same as `var`.
- **beta2_power** (float) - :math:`beta_2^t(\beta_2^{t})` in the updating formula,
the data type value should be the same as `var`.
- **lr** (float) - :math:`l` in the updating formula. The paper suggested value is :math:`10^{-8}`,
the data type value should be the same as `var`.
- **beta1** (float) - The exponential decay rate for the 1st moment estimations,
the data type value should be the same as `var`. The paper suggested value is :math:`0.9`.
- **beta2** (float) - The exponential decay rate for the 2nd moment estimations,
the data type value should be the same as `var`. The paper suggested value is :math:`0.999`.
- **epsilon** (float) - Term added to the denominator to improve numerical stability.
- **gradient** (Tensor) - Gradient, has the same shape and data type as `var`.
Outputs:
Tuple of 3 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as Inputs `var`.
- **m** (Tensor) - The same shape and data type as Inputs `m`.
- **v** (Tensor) - The same shape and data type as Inputs `v`.
Raises:
TypeError: If neither `use_locking` nor `use_nesterov` is a bool.
TypeError: If `var`, `m` or `v` is not a Tensor.
TypeError: If `beta1_power`, `beta2_power1`, `lr`, `beta1`, `beta2`, `epsilon` or `gradient` is not a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.apply_adam = ops.Adam()
... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var")
... self.m = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="m")
... self.v = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="v")
... def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad):
... out = self.apply_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2,
... epsilon, grad)
... return out
...
>>> net = Net()
>>> gradient = Tensor(np.ones([2, 2]).astype(np.float32))
>>> output = net(0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient)
>>> print(net.var.asnumpy())
[[0.9996838 0.9996838]
[0.9996838 0.9996838]]
"""
@prim_attr_register
def __init__(self, use_locking=False, use_nesterov=False):
"""Initialize Adam."""
validator.check_value_type("use_locking", use_locking, [bool], self.name)
validator.check_value_type("use_nesterov", use_nesterov, [bool], self.name)
self.add_prim_attr('side_effect_mem', True)
[docs]class AdamWeightDecay(PrimitiveWithInfer):
r"""
Updates gradients by the Adaptive Moment Estimation algorithm with weight decay (AdamWeightDecay).
The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
The AdamWeightDecay variant was proposed in `Decoupled Weight Decay Regularization
<https://arxiv.org/abs/1711.05101>`_.
The updating formulas are as follows,
.. math::
\begin{array}{ll} \\
m = \beta_1 * m + (1 - \beta_1) * g \\
v = \beta_2 * v + (1 - \beta_2) * g * g \\
update = \frac{m}{\sqrt{v} + \epsilon} \\
update =
\begin{cases}
update + weight\_decay * w
& \text{ if } weight\_decay > 0 \\
update
& \text{ otherwise }
\end{cases} \\
w = w - lr * update
\end{array}
:math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents
`gradient`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`,
:math:`lr` represents `learning_rate`, :math:`w` represents `var`, :math:`decay` represents `weight_decay`,
:math:`\epsilon` represents `epsilon`.
Args:
use_locking (bool): Whether to enable a lock to protect variable tensors from being updated.
If true, updates of the var, m, and v tensors will be protected by a lock.
If false, the result is unpredictable. Default: False.
Inputs:
- **var** (Parameter) - Weights to be updated. The shape is :math:`(N, *)` where :math:`*` means,
any number of additional dimensions. The data type can be float16 or float32.
- **m** (Parameter) - The 1st moment vector in the updating formula,
it should have the the shape as `var`. The data type can be float16 or float32.
- **v** (Parameter) - The 2nd moment vector in the updating formula,
it should have the same shape and dtype as `m`.
- **lr** (float) - :math:`l` in the updating formula. The paper suggested value is :math:`10^{-8}`,
the data type should be float32.
- **beta1** (float) - The exponential decay rate for the 1st moment estimations,
the data type should be float32. The paper suggested value is :math:`0.9`
- **beta2** (float) - The exponential decay rate for the 2nd moment estimations,
the data type should be float32. The paper suggested value is :math:`0.999`
- **epsilon** (float) - Term added to the denominator to improve numerical stability,
the data type should be float32.
- **decay** (float) - The weight decay value, must be a scalar tensor with float32 data type.
Default: 0.0.
- **gradient** (Tensor) - Gradient, has the same shape and data type as `var`.
Outputs:
Tuple of 3 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **m** (Tensor) - The same shape and data type as `m`.
- **v** (Tensor) - The same shape and data type as `v`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
>>> from mindspore import Tensor, Parameter, ops
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.adam_weight_decay = ops.AdamWeightDecay()
... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var")
... self.m = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="m")
... self.v = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="v")
... def construct(self, lr, beta1, beta2, epsilon, decay, grad):
... out = self.adam_weight_decay(self.var, self.m, self.v, lr, beta1, beta2,
... epsilon, decay, grad)
... return out
>>> net = Net()
>>> gradient = Tensor(np.ones([2, 2]).astype(np.float32))
>>> output = net(0.001, 0.9, 0.999, 1e-8, 0.0, gradient)
>>> print(net.var.asnumpy())
[[0.999 0.999]
[0.999 0.999]]
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('m', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T2),
sig.make_sig('v', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T2),
sig.make_sig('lr', dtype=sig.sig_dtype.T1),
sig.make_sig('beta1', dtype=sig.sig_dtype.T1),
sig.make_sig('beta2', dtype=sig.sig_dtype.T1),
sig.make_sig('epsilon', dtype=sig.sig_dtype.T1),
sig.make_sig('decay', dtype=sig.sig_dtype.T1),
sig.make_sig('gradient', dtype=sig.sig_dtype.T)
)
@prim_attr_register
def __init__(self, use_locking=False):
"""Initialize AdamWeightDecay."""
self.add_prim_attr('side_effect_mem', True)
validator.check_value_type("use_locking", use_locking, [bool], self.name)
def infer_shape(self, var_shape, m_shape, v_shape, lr_shape, beta1_shape, beta2_shape,
epsilon_shape, decay_shape, grad_shape):
validator.check("var_shape", var_shape, "m_shape", m_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "v_shape", v_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "grad_shape", grad_shape, Rel.EQ, self.name)
return var_shape, m_shape, v_shape
def infer_dtype(self, var_dtype, m_dtype, v_dtype, lr_dtype, beta1_dtype, beta2_dtype,
epsilon_dtype, decay_dtype, grad_dtype):
args = {"var": var_dtype, "grad": grad_dtype}
validator.check_tensors_dtypes_same_and_valid(args, mstype.number_type, self.name)
args = {"m": m_dtype, "v": v_dtype}
validator.check_tensors_dtypes_same_and_valid(args, mstype.number_type, self.name)
args = {"lr": lr_dtype, "beta1": beta1_dtype, "beta2": beta2_dtype, "epsilon": epsilon_dtype,
"decay": decay_dtype}
validator.check_scalar_or_tensor_types_same(args, [mstype.float32], self.name, True)
return var_dtype, m_dtype, v_dtype
[docs]class AdamNoUpdateParam(PrimitiveWithInfer):
r"""
Updates gradients by the Adaptive Moment Estimation (Adam) algorithm. This operator do not update the parameter, but
calculate the value that should be added to the parameter instead.
The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
The updating formulas are as follows,
.. math::
\begin{array}{ll} \\
m = \beta_1 * m + (1 - \beta_1) * g \\
v = \beta_2 * v + (1 - \beta_2) * g * g \\
l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\
\Delta{w} = - l * \frac{m}{\sqrt{v} + \epsilon}
\end{array}
:math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents
`gradient`, :math:`l` represents scaling factor `lr`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`,
:math:`t` represents updating step while :math:`beta_1^t(\beta_1^{t})` and :math:`beta_2^t(\beta_2^{t})`
represent `beta1_power` and `beta2_power`, :math:`\alpha` represents `learning_rate`,
:math:`w` represents the parameter to be updated, :math:`\epsilon` represents `epsilon`.
Args:
use_locking (bool): Whether to enable a lock to protect variable tensors from being updated.
If true, updates of the var, m, and v tensors will be protected by a lock.
If false, the result is unpredictable. Default: False.
use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
If true, update the gradients using NAG.
If false, update the gradients without using NAG. Default: False.
Inputs:
- **m** (Tensor) - The 1st moment vector in the updating formula. The shape is :math:`(N, *)`
where :math:`*` means, any number of additional dimensions. The data type must be float32.
- **v** (Tensor) - the 2nd moment vector in the updating formula. The shape must be the same as `m`.
The data type must be float32.
- **beta1_power** (Tensor) - :math:`beta_1^t(\beta_1^{t})` in the updating formula.
The shape is :math:`(1, )` and the data type must be float32.
- **beta2_power** (Tensor) - :math:`beta_2^t(\beta_2^{t})` in the updating formula.
The shape is :math:`(1, )` and the data type must be float32.
- **lr** (Tensor) - :math:`l` in the updating formula.
The shape is :math:`(1, )` and the data type must be float32.
- **beta1** (Tensor) - The exponential decay rate for the 1st moment estimations.
The shape is :math:`(1, )` and the data type must be float32.
- **beta2** (Tensor) - The exponential decay rate for the 2nd moment estimations.
The shape is :math:`(1, )` and the data type must be float32.
- **epsilon** (Tensor) - Term added to the denominator to improve numerical stability.
The shape is :math:`(1, )` and the data type must be float32.
- **gradient** (Tensor) - Gradient, the shape must be the same as `m`, the data type must be float32.
Outputs:
Tensor, whose shape and data type are the same with Inputs `gradient`, is a value that should be added to the
parameter to be updated.
Raises:
TypeError: If neither `use_locking` nor `use_nesterov` is a bool.
TypeError: If `m`, `v`, `beta1_power`, `beta2_power1`, `lr`, `beta1`, `beta2`, `epsilon` or `gradient`
is not a Tensor.
Supported Platforms:
``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.adam = ops.AdamNoUpdateParam()
... self.m = Parameter(Tensor(np.array([[0.1, 0.1, 0.1], [0.2, 0.2, 0.2]]).astype(np.float32)),
... name="m")
... self.v = Parameter(Tensor(np.array([[0.1, 0.1, 0.1], [0.2, 0.2, 0.2]]).astype(np.float32)),
... name="v")
... def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad):
... out = self.adam(self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad)
... return out
>>> net = Net()
>>> beta1_power = Tensor(0.9, ms.float32)
>>> beta2_power = Tensor(0.999, ms.float32)
>>> lr = Tensor(0.001, ms.float32)
>>> beta1 = Tensor(0.9, ms.float32)
>>> beta2 = Tensor(0.999, ms.float32)
>>> epsilon = Tensor(1e-8, ms.float32)
>>> gradient = Tensor(np.array([[0.1, 0.1, 0.1], [0.1, 0.1, 0.1]]).astype(np.float32))
>>> result = net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient)
>>> print(result)
[[-0.00010004 -0.00010004 -0.00010004]
[-0.00013441 -0.00013441 -0.00013441]]
"""
@prim_attr_register
def __init__(self, use_locking=False, use_nesterov=False):
"""Initialize AdamNoUpdateParam."""
validator.check_value_type("use_locking", use_locking, [bool], self.name)
validator.check_value_type("use_nesterov", use_nesterov, [bool], self.name)
def infer_shape(self, m_shape, v_shape, beta1_power_shape, beta2_power_shape, lr_shape,
beta1_shape, beta2_shape, epsilon_shape, grad_shape):
validator.check("grad_shape", grad_shape, "m_shape", m_shape, Rel.EQ, self.name)
validator.check("grad_shape", grad_shape, "v_shape", v_shape, Rel.EQ, self.name)
return grad_shape
def infer_dtype(self, m_dtype, v_dtype, beta1_power_dtype, beta2_power_dtype, lr_dtype,
beta1_dtype, beta2_dtype, epsilon_dtype, grad_dtype):
args = {"m": m_dtype, "v": v_dtype, "grad": grad_dtype,
"beta1_power": beta1_power_dtype, "beta2_power": beta2_power_dtype, 'lr': lr_dtype,
"beta1": beta1_dtype, "beta2": beta2_dtype, "epsilon": epsilon_dtype}
validator.check_tensors_dtypes_same_and_valid(args, [mstype.float32], self.name)
return grad_dtype
[docs]class FusedSparseAdam(Primitive):
r"""
Merges the duplicate value of the gradient and then updates parameters by the Adaptive Moment Estimation (Adam)
algorithm. This operator is used when the gradient is sparse.
The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
The updating formulas are as follows,
.. math::
\begin{array}{ll} \\
m = \beta_1 * m + (1 - \beta_1) * g \\
v = \beta_2 * v + (1 - \beta_2) * g * g \\
l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\
w = w - l * \frac{m}{\sqrt{v} + \epsilon}
\end{array}
:math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents
`gradient`, :math:`l` represents scaling factor `lr`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`,
:math:`t` represents updating step while :math:`\beta_1^t` and :math:`\beta_2^t` represent `beta1_power` and
`beta2_power`, :math:`\alpha` represents `learning_rate`, :math:`w` represents `var`, :math:`\epsilon` represents
`epsilon`.
All of inputs except `indices` comply with the implicit type conversion rules to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Args:
use_locking (bool): Whether to enable a lock to protect variable tensors from being updated.
If true, updates of the var, m, and v tensors will be protected by a lock.
If false, the result is unpredictable. Default: False.
use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
If true, update the gradients using NAG.
If false, update the gradients without using NAG. Default: False.
Inputs:
- **var** (Parameter) - Parameters to be updated with float32 data type. The shape is :math:`(N, *)`
where :math:`*` means, any number of additional dimensions.
- **m** (Parameter) - The 1st moment vector in the updating formula, has the same shape and data type as `var`.
- **v** (Parameter) - The 2nd moment vector in the updating formula, has the same shape and data type as `var`.
Mean square gradients, has the same type as `var` with float32 data type.
- **beta1_power** (Tensor) - :math:`beta_1^t` in the updating formula with float32 data type.
The shape is :math:`(1, )`.
- **beta2_power** (Tensor) - :math:`beta_2^t` in the updating formula with float32 data type.
The shape is :math:`(1, )`.
- **lr** (Tensor) - :math:`l` in the updating formula. With float32 data type.
The shape is :math:`(1, )`.
- **beta1** (Tensor) - The exponential decay rate for the 1st moment estimations with float32 data type.
The shape is :math:`(1, )`.
- **beta2** (Tensor) - The exponential decay rate for the 2nd moment estimations with float32 data type.
The shape is :math:`(1, )`.
- **epsilon** (Tensor) - Term added to the denominator to improve numerical stability with float32 data type.
The shape is :math:`(1, )`.
- **gradient** (Tensor) - Gradient, has the same data type as `var` and
gradient.shape[1:] = var.shape[1:] if var.shape > 1.
- **indices** (Tensor) - Gradient indices with int32 data type and indices.shape[0] = gradient.shape[0].
Outputs:
Tuple of 3 Tensors, this operator will update the input parameters directly, the outputs are useless.
- **var** (Tensor) - A Tensor with shape :math:`(N, *)`.
- **m** (Tensor) - A Tensor with shape :math:`(1, )`.
- **v** (Tensor) - A Tensor with shape :math:`(1, )`.
Raises:
TypeError: If neither `use_locking` nor `use_neserov` is a bool.
TypeError: If dtype of `var`, `m`, `v`, `beta1_power`, `beta2_power`, `lr`, `beta1`, `beta2`, `epsilon`,
`gradient` or `indices` is not float32.
RuntimeError: If the data type of all inputs except `indices` conversion of Parameter is not supported.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.sparse_apply_adam = ops.FusedSparseAdam()
... self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var")
... self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m")
... self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v")
... def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, indices):
... out = self.sparse_apply_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2,
... epsilon, grad, indices)
... return out
...
>>> net = Net()
>>> beta1_power = Tensor(0.9, mindspore.float32)
>>> beta2_power = Tensor(0.999, mindspore.float32)
>>> lr = Tensor(0.001, mindspore.float32)
>>> beta1 = Tensor(0.9, mindspore.float32)
>>> beta2 = Tensor(0.999, mindspore.float32)
>>> epsilon = Tensor(1e-8, mindspore.float32)
>>> gradient = Tensor(np.array([[[0.1, 0.1]], [[0.1, 0.1]]]), mindspore.float32)
>>> indices = Tensor([0, 1], mindspore.int32)
>>> output = net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices)
>>> print(net.var.asnumpy())
[[[0.9997121 0.9997121 ]]
[[0.9997121 0.9997121 ]]
[[0.99971527 0.99971527]]]
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('m', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('v', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('beta1_power', dtype=sig.sig_dtype.T),
sig.make_sig('beta2_power', dtype=sig.sig_dtype.T),
sig.make_sig('lr', dtype=sig.sig_dtype.T),
sig.make_sig('beta1', dtype=sig.sig_dtype.T),
sig.make_sig('beta2', dtype=sig.sig_dtype.T),
sig.make_sig('epsilon', dtype=sig.sig_dtype.T),
sig.make_sig('grad', dtype=sig.sig_dtype.T),
sig.make_sig('indices', dtype=sig.sig_dtype.T1)
)
@prim_attr_register
def __init__(self, use_locking=False, use_nesterov=False):
"""Initialize FusedSparseAdam."""
validator.check_value_type("use_locking", use_locking, [bool], self.name)
validator.check_value_type("use_nesterov", use_nesterov, [bool], self.name)
self.init_prim_io_names(inputs=['var', 'm', 'v', 'beta1_power', 'beta2_power', 'lr', 'beta1', 'beta2',
'epsilon', 'grad', 'indices'],
outputs=['var', 'm', 'v'])
self.add_prim_attr('side_effect_mem', True)
[docs]class FusedSparseLazyAdam(Primitive):
r"""
Merges the duplicate value of the gradient and then updates parameters by the Adaptive Moment Estimation (Adam)
algorithm. This operator is used when the gradient is sparse. The behavior is not equivalent to the
original Adam algorithm, as only the current indices parameters will be updated.
The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
The updating formulas are as follows,
.. math::
\begin{array}{ll} \\
m = \beta_1 * m + (1 - \beta_1) * g \\
v = \beta_2 * v + (1 - \beta_2) * g * g \\
l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\
w = w - l * \frac{m}{\sqrt{v} + \epsilon}
\end{array}
:math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents
`gradient`, :math:`l` represents scaling factor `lr`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`,
:math:`t` represents updating step while :math:`\beta_1^t` and :math:`\beta_2^t` represent `beta1_power` and
`beta2_power`, :math:`\alpha` represents `learning_rate`, :math:`w` represents `var`, :math:`\epsilon` represents
`epsilon`.
All of inputs except `indices` comply with the implicit type conversion rules to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Args:
use_locking (bool): Whether to enable a lock to protect variable tensors from being updated.
If true, updates of the var, m, and v tensors will be protected by a lock.
If false, the result is unpredictable. Default: False.
use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
If true, update the gradients using NAG.
If false, update the gradients without using NAG. Default: False.
Inputs:
- **var** (Parameter) - Parameters to be updated with float32 data type. The shape is :math:`(N, *)`
where :math:`*` means, any number of additional dimensions.
- **m** (Parameter) - The 1st moment vector in the updating formula, has the same shape and data type as `var`.
- **v** (Parameter) - The 2nd moment vector in the updating formula, has the same shape and data type as `var`.
Mean square gradients, has the same type as `var` with float32 data type.
- **beta1_power** (Tensor) - :math:`beta_1^t` in the updating formula with float32 data type.
The shape is :math:`(1, )`.
- **beta2_power** (Tensor) - :math:`beta_2^t` in the updating formula with float32 data type.
The shape is :math:`(1, )`.
- **lr** (Tensor) - :math:`l` in the updating formula with float32 data type.
The shape is :math:`(1, )`.
- **beta1** (Tensor) - The exponential decay rate for the 1st moment estimations with float32 data type.
The shape is :math:`(1, )`.
- **beta2** (Tensor) - The exponential decay rate for the 2nd moment estimations with float32 data type.
The shape is :math:`(1, )`.
- **epsilon** (Tensor) - Term added to the denominator to improve numerical stability with float32 data type.
The shape is :math:`(1, )`.
- **gradient** (Tensor) - Gradient value with float32 data type and
gradient.shape[1:] = var.shape[1:] if var.shape > 1.
- **indices** (Tensor) - Gradient indices with int32 data type and indices.shape[0] = gradient.shape[0].
Outputs:
Tuple of 3 Tensors, this operator will update the input parameters directly, the outputs are useless.
- **var** (Tensor) - A Tensor with shape :math:`(N, *)`.
- **m** (Tensor) - A Tensor with shape :math:`(1, )`.
- **v** (Tensor) - A Tensor with shape :math:`(1, )`.
Raises:
TypeError: If neither `use_locking` nor `use_nestrov` is a bool.
TypeError: If dtype of `var`, `m`, `v`, `beta1_power`, `beta2_power`, `lr`, `beta1`, `beta2`, `epsilon` or
gradient is not float32.
TypeError: If dtype of `indices` is not int32.
RuntimeError: If the data type of all inputs except `indices` conversion of Parameter is not supported.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.sparse_apply_lazyadam = ops.FusedSparseLazyAdam()
... self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var")
... self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m")
... self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v")
... def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, indices):
... out = self.sparse_apply_lazyadam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1,
... beta2, epsilon, grad, indices)
... return out
...
>>> net = Net()
>>> beta1_power = Tensor(0.9, mindspore.float32)
>>> beta2_power = Tensor(0.999, mindspore.float32)
>>> lr = Tensor(0.001, mindspore.float32)
>>> beta1 = Tensor(0.9, mindspore.float32)
>>> beta2 = Tensor(0.999, mindspore.float32)
>>> epsilon = Tensor(1e-8, mindspore.float32)
>>> gradient = Tensor(np.array([[[0.1, 0.1]], [[0.1, 0.1]]]), mindspore.float32)
>>> indices = Tensor([0, 1], mindspore.int32)
>>> output = net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices)
>>> print(net.var.asnumpy())
[[[0.9997121 0.9997121 ]]
[[0.9997121 0.9997121 ]]
[[1. 1. ]]]
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('m', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('v', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('beta1_power', dtype=sig.sig_dtype.T),
sig.make_sig('beta2_power', dtype=sig.sig_dtype.T),
sig.make_sig('lr', dtype=sig.sig_dtype.T),
sig.make_sig('beta1', dtype=sig.sig_dtype.T),
sig.make_sig('beta2', dtype=sig.sig_dtype.T),
sig.make_sig('epsilon', dtype=sig.sig_dtype.T),
sig.make_sig('grad', dtype=sig.sig_dtype.T),
sig.make_sig('indices', dtype=sig.sig_dtype.T1)
)
@prim_attr_register
def __init__(self, use_locking=False, use_nesterov=False):
"""Initialize FusedSparseLazyAdam."""
validator.check_value_type("use_locking", use_locking, [bool], self.name)
validator.check_value_type("use_nesterov", use_nesterov, [bool], self.name)
self.init_prim_io_names(inputs=['var', 'm', 'v', 'beta1_power', 'beta2_power', 'lr', 'beta1', 'beta2',
'epsilon', 'grad', 'indices'],
outputs=['var', 'm', 'v'])
self.add_prim_attr('side_effect_mem', True)
[docs]class FusedSparseFtrl(Primitive):
"""
Merges the duplicate value of the gradient and then updates relevant entries according to the FTRL-proximal scheme.
All inputs except `indices` comply with the implicit type conversion rules to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Args:
lr (float): The learning rate value, must be positive.
l1 (float): l1 regularization strength, must be greater than or equal to zero.
l2 (float): l2 regularization strength, must be greater than or equal to zero.
lr_power (float): Learning rate power controls how the learning rate decreases during training,
must be less than or equal to zero. Use fixed learning rate if `lr_power` is zero.
use_locking (bool): Use locks for updating operation if true . Default: False.
Inputs:
- **var** (Parameter) - The variable to be updated. The data type must be float32. The shape is :math:`(N, *)`
where :math:`*` means, any number of additional dimensions.
- **accum** (Parameter) - The accumulation to be updated, must be same type and shape as `var`.
- **linear** (Parameter) - the linear coefficient to be updated, must be same type and shape as `var`.
- **grad** (Tensor) - A tensor of the same type as `var` and
grad.shape[1:] = var.shape[1:] if var.shape > 1.
- **indices** (Tensor) - A vector of indices into the first dimension of `var` and `accum`.
The type must be int32 and indices.shape[0] = grad.shape[0].
Outputs:
Tuple of 3 Tensor, this operator will update the input parameters directly, the outputs are useless.
- **var** (Tensor) - A Tensor with shape :math:`(N, *)`.
- **accum** (Tensor) - A Tensor with shape :math:`(1, )`.
- **linear** (Tensor) - A Tensor with shape :math:`(1, )`.
Raises:
TypeError: If `lr`, `l1`, `l2` or `lr_power` is not a float.
ValueError: If shape of `lr_power` less than or equal to zero.
TypeError: If dtype of `var` is not float32.
TypeError: If dtype of `indices` is not int32.
TypeError: If shape of `accum`, `linear` or `grad` is not same as `var`.
TypeError: If shape of `indices` is not same as shape of first dimension of `grad`.
RuntimeError: If the data type of all of inputs except `indices` conversion of Parameter is not supported.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> class SparseApplyFtrlNet(nn.Cell):
... def __init__(self):
... super(SparseApplyFtrlNet, self).__init__()
... self.sparse_apply_ftrl = ops.FusedSparseFtrl(lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5)
... self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var")
... self.accum = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="accum")
... self.linear = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="linear")
...
... def construct(self, grad, indices):
... out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices)
... return out
...
>>> net = SparseApplyFtrlNet()
>>> grad = Tensor(np.array([[[0.1, 0.1]], [[0.1, 0.1]]]).astype(np.float32))
>>> indices = Tensor(np.array([0, 1]).astype(np.int32))
>>> output = net(grad, indices)
>>> print(net.var.asnumpy())
[[[-0.00598256 -0.00598256]]
[[-0.00598256 -0.00598256]]
[[ 1. 1. ]]]
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('linear', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('grad', dtype=sig.sig_dtype.T),
sig.make_sig('indices', dtype=sig.sig_dtype.T1)
)
@prim_attr_register
def __init__(self, lr, l1, l2, lr_power, use_locking=False):
"""Initialize FusedSparseFtrl."""
self.init_prim_io_names(inputs=['var', 'accum', 'linear', 'grad', 'indices'],
outputs=['output'])
self.add_prim_attr('side_effect_mem', True)
validator.check_value_type("lr", lr, [float], self.name)
validator.check_value_type("l1", l1, [float], self.name)
validator.check_value_type("l2", l2, [float], self.name)
validator.check_value_type("lr_power", lr_power, [float], self.name)
self.lr = validator.check_positive_float(lr, "lr", self.name)
self.l1 = validator.check_non_negative_float(l1, "l1", self.name)
self.l2 = validator.check_non_negative_float(l2, "l2", self.name)
self.lr_power = validator.check_number("lr_power", lr_power, 0, Rel.LE, self.name)
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
[docs]class FusedSparseProximalAdagrad(Primitive):
r"""
Merges the duplicate value of the gradient and then updates relevant entries according to the proximal adagrad
algorithm.
.. math::
\begin{array}{ll} \\
accum += grad * grad \\
\text{prox_v} = var - lr * grad * \frac{1}{\sqrt{accum}} \\
var = \frac{sign(\text{prox_v})}{1 + lr * l2} * \max(\left| \text{prox_v} \right| - lr * l1, 0)
\end{array}
All of inputs except `indices` comply with the implicit type conversion rules to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Args:
use_locking (bool): If true, the variable and accumulation tensors will be protected from being updated.
Default: False.
Inputs:
- **var** (Parameter) - Variable tensor to be updated. The data type must be float32.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **accum** (Parameter) - Variable tensor to be updated, has the same shape and data type as `var`.
- **lr** (Tensor) - The learning rate value. The data type must be float32. The shape is :math:`(1, )`.
- **l1** (Tensor) - l1 regularization strength. The data type must be float32. The shape is :math:`(1, )`.
- **l2** (Tensor) - l2 regularization strength. The data type must be float32. The shape is :math:`(1, )`.
- **grad** (Tensor) - A tensor of the same data type as `var` and
grad.shape[1:] = var.shape[1:] if var.shape > 1.
- **indices** (Tensor) - A vector of indices into the first dimension of `var` and `accum`.
The type must be int32 and indices.shape[0] = grad.shape[0].
Outputs:
Tuple of 2 Tensors, this operator will update the input parameters directly, the outputs are useless.
- **var** (Tensor) - A Tensor with shape :math:`(N, *)`.
- **accum** (Tensor) - A Tensor with shape :math:`(1, )`.
Raises:
TypeError: If `use_locking` is not a bool.
TypeError: If dtype of `var`, `accum`, `lr`, `l1`, `l2` or `grad` is not float32.
TypeError: If dtype of `indices` is not int32.
RuntimeError: If the data type of all inputs except `indices` conversion of Parameter is not supported.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.sparse_apply_proximal_adagrad = ops.FusedSparseProximalAdagrad()
... self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var")
... self.accum = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="accum")
... self.lr = Tensor(0.01, mindspore.float32)
... self.l1 = Tensor(0.0, mindspore.float32)
... self.l2 = Tensor(0.0, mindspore.float32)
... def construct(self, grad, indices):
... out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1,
... self.l2, grad, indices)
... return out
...
>>> net = Net()
>>> grad = Tensor(np.array([[[0.1, 0.1]], [[0.1, 0.1]]]).astype(np.float32))
>>> indices = Tensor(np.array([0, 1]).astype(np.int32))
>>> output = net(grad, indices)
>>> print(net.var.asnumpy())
[[[0.99900496 0.99900496]]
[[0.99900496 0.99900496]]
[[1. 1. ]]]
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('lr', dtype=sig.sig_dtype.T),
sig.make_sig('l1', dtype=sig.sig_dtype.T),
sig.make_sig('l2', dtype=sig.sig_dtype.T),
sig.make_sig('grad', dtype=sig.sig_dtype.T),
sig.make_sig('indices', dtype=sig.sig_dtype.T1)
)
@prim_attr_register
def __init__(self, use_locking=False):
"""Initialize FusedSparseProximalAdagrad"""
self.init_prim_io_names(inputs=['var', 'accum', 'lr', 'l1', 'l2', 'grad', 'indices'],
outputs=['output'])
self.add_prim_attr('side_effect_mem', True)
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
[docs]class KLDivLoss(Primitive):
r"""
Computes the Kullback-Leibler divergence between the logits and the labels.
For tensors of the same shape :math:`x` and :math:`target`,
the updating formulas of KLDivLoss algorithm are as follows,
.. math::
L(x, target) = target \cdot (\log target - x)
Then,
.. math::
\ell(x, target) = \begin{cases}
L(x, target), & \text{if reduction} = \text{'none';}\\
\operatorname{mean}(L(x, target)), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L(x, target)) / x.\operatorname{shape}[0], & \text{if reduction} = \text{'batchmean';}\\
\operatorname{sum}(L(x, target)), & \text{if reduction} = \text{'sum'.}
\end{cases}
where :math:`x` represents `logits`.
:math:`target` represents `labels`.
:math:`\ell(x, target)` represents `output`.
Note:
- Currently it does not support float64 on `Ascend`.
- It behaves the same as the mathematical definition only when `reduction` is set to `batchmean`.
Args:
reduction (str): Specifies the reduction to be applied to the output.
Default: 'mean'.
- On Ascend, the value of `reduction` must be one of 'batchmean', 'none' or 'sum'.
- On GPU, the value of `reduction` must be one of 'mean', 'none' or 'sum'.
Inputs:
- **logits** (Tensor) - The input Tensor. The data type must be float16, float32 or float64.
- **labels** (Tensor) - The label Tensor which has the same shape and data type as `logits`.
Outputs:
Tensor or Scalar, if `reduction` is 'none', then output is a tensor and has the same shape as `logits`.
Otherwise it is a scalar.
Raises:
TypeError: If `reduction` is not a str.
TypeError: If neither `logits` nor `labels` is a Tensor.
TypeError: If dtype of `logits` or `labels` is not currently supported.
RuntimeError: If `logits` or `labels` is a scalar when `reduction` is 'batchmean'.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.kldiv_loss = ops.KLDivLoss(reduction='sum')
... def construct(self, logits, labels):
... result = self.kldiv_loss(logits, labels)
... return result
...
>>> net = Net()
>>> logits = Tensor(np.array([0.2, 0.7, 0.1]), mindspore.float32)
>>> labels = Tensor(np.array([0., 1., 0.]), mindspore.float32)
>>> output = net(logits, labels)
>>> print(output)
-0.7
"""
@prim_attr_register
def __init__(self, reduction='mean'):
"""Initialize KLDivLoss."""
device_target = context.get_context("device_target")
if device_target == "GPU":
support_mode = ['none', 'mean', 'sum']
elif device_target == "Ascend":
support_mode = ['none', 'batchmean', 'sum']
elif device_target == "CPU":
raise ValueError(f"'{self.name}' does not support device target: '{device_target}'")
else:
raise ValueError(f"'{self.name}' unknown device target: '{device_target}'")
self.reduction = validator.check_string(reduction, support_mode, 'reduction', self.name)
[docs]class BinaryCrossEntropy(Primitive):
r"""
Computes the binary cross entropy between the logits and the labels.
Sets logits as :math:`x`, labels as :math:`y`, output as :math:`\ell(x, y)`.
Let,
.. math::
L = \{l_1,\dots,l_N\}^\top, \quad
l_n = - w_n \left[ y_n \cdot \log x_n + (1 - y_n) \cdot \log (1 - x_n) \right]
In which, :math:`L` indicates the loss of all batch_sizes, :math:`l` indicates the loss of one batch_size,
and n indicates one batch_size in the 1-N range. Then,
.. math::
\ell(x, y) = \begin{cases}
L, & \text{if reduction} = \text{'none';}\\
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
.. warning::
- The value of "x" must range from 0 to 1.
- The value of "y" must be "0" or "1".
Args:
reduction (str): Specifies the reduction to be applied to the output.
Its value must be one of 'none', 'mean' or 'sum'. Default: 'mean'.
Inputs:
- **logits** (Tensor) - The input Tensor. The data type must be float16 or float32,
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **labels** (Tensor) - The label Tensor which has the same shape and data type as `logits`.
- **weight** (Tensor, optional) - A rescaling weight applied to the loss of each batch element.
And it must have the same shape and data type as `logits`. Default: None.
Outputs:
Tensor, has the same dtype as `logits`. if `reduction` is 'none', then it has the same shape as `logits`.
Otherwise, it is a scalar Tensor.
Raises:
TypeError: If dtype of `logits`, `labels` or `weight` (if given) is neither float16 nor float32.
ValueError: If `reduction` is not one of 'none', 'mean' or 'sum'.
ValueError: If shape of `labels` is not the same as `logits` or `weight` (if given).
TypeError: If `logits`, `labels` or `weight` is not a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.binary_cross_entropy = ops.BinaryCrossEntropy()
... def construct(self, logits, labels, weight):
... result = self.binary_cross_entropy(logits, labels, weight)
... return result
...
>>> net = Net()
>>> logits = Tensor(np.array([0.2, 0.7, 0.1]), mindspore.float32)
>>> labels = Tensor(np.array([0., 1., 0.]), mindspore.float32)
>>> weight = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> output = net(logits, labels, weight)
>>> print(output)
0.38240486
"""
@prim_attr_register
def __init__(self, reduction='mean'):
"""Initialize BinaryCrossEntropy."""
self.reduction = validator.check_string(reduction, ['none', 'mean', 'sum'], 'reduction', self.name)
[docs]class ApplyAdaMax(Primitive):
r"""
Updates relevant entries according to the adamax scheme.
The updating formulas are as follows,
.. math::
\begin{array}{ll} \\
m_{t+1} = \beta_1 * m_{t} + (1 - \beta_1) * g \\
v_{t+1} = \max(\beta_2 * v_{t}, \left| g \right|) \\
var = var - \frac{l}{1 - \beta_1^{t+1}} * \frac{m_{t+1}}{v_{t+1} + \epsilon}
\end{array}
:math:`t` represents updating step while :math:`m` represents the 1st moment vector, :math:`m_{t}`
is the last moment of :math:`m_{t+1}`, :math:`v` represents the 2nd moment vector, :math:`v_{t}`
is the last moment of :math:`v_{t+1}`, :math:`l` represents scaling factor `lr`,
:math:`g` represents `grad`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`,
:math:`\beta_1^{t+1}` represents `beta1_power`, :math:`var` represents the variable to be updated,
:math:`\epsilon` represents `epsilon`.
Inputs of `var`, `m`, `v` and `grad` comply with the implicit type conversion rules
to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Inputs:
- **var** (Parameter) - Variable to be updated. With float32 or float16 data type.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **m** (Parameter) - The 1st moment vector in the updating formula, has the same shape and type as `var`.
With float32 or float16 data type.
- **v** (Parameter) - The 2nd moment vector in the updating formula. Mean square gradients
with the same shape and type as `var`. With float32 or float16 data type.
- **beta1_power** (Union[Number, Tensor]) - :math:`beta_1^t` in the updating formula, must be a scalar.
With float32 or float16 data type.
- **lr** (Union[Number, Tensor]) - Learning rate, :math:`l` in the updating formula, must be a scalar.
With float32 or float16 data type.
- **beta1** (Union[Number, Tensor]) - The exponential decay rate for the 1st moment estimations,
must be a scalar. With float32 or float16 data type.
- **beta2** (Union[Number, Tensor]) - The exponential decay rate for the 2nd moment estimations,
must be a scalar. With float32 or float16 data type.
- **epsilon** (Union[Number, Tensor]) - A small value added for numerical stability, must be a scalar.
With float32 or float16 data type.
- **grad** (Tensor) - A tensor for gradient, has the same shape and type as `var`.
With float32 or float16 data type.
Outputs:
Tuple of 3 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **m** (Tensor) - The same shape and data type as `m`.
- **v** (Tensor) - The same shape and data type as `v`.
Raises:
TypeError: If dtype of `var`, `m`, `v`, `beta_power`, `lr`, `beta1`, `beta2`, `epsilon` or `grad` is neither
float16 nor float32.
TypeError: If `beta_power`, `lr`, `beta1`, `beta2` or `epsilon` is neither a Number nor a Tensor.
TypeError: If `grad` is not a Tensor.
RuntimeError: If the data type of `var`, `m`, `v` and `grad` conversion of Parameter is not supported.
Supported Platforms:
``Ascend``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.apply_ada_max = ops.ApplyAdaMax()
... self.var = Parameter(Tensor(np.array([[0.6, 0.4],
... [0.1, 0.5]]).astype(np.float32)), name="var")
... self.m = Parameter(Tensor(np.array([[0.6, 0.5],
... [0.2, 0.6]]).astype(np.float32)), name="m")
... self.v = Parameter(Tensor(np.array([[0.9, 0.1],
... [0.7, 0.8]]).astype(np.float32)), name="v")
... def construct(self, beta1_power, lr, beta1, beta2, epsilon, grad):
... out = self.apply_ada_max(self.var, self.m, self.v, beta1_power, lr, beta1, beta2, epsilon, grad)
... return out
...
>>> net = Net()
>>> beta1_power =Tensor(0.9, mindspore.float32)
>>> lr = Tensor(0.001, mindspore.float32)
>>> beta1 = Tensor(0.9, mindspore.float32)
>>> beta2 = Tensor(0.99, mindspore.float32)
>>> epsilon = Tensor(1e-10, mindspore.float32)
>>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32))
>>> output = net(beta1_power, lr, beta1, beta2, epsilon, grad)
>>> print(output)
(Tensor(shape=[2, 2], dtype=Float32, value=
[[ 5.93602717e-01, 3.92571449e-01],
[ 9.72582996e-02, 4.92249995e-01]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 5.69999993e-01, 5.19999981e-01],
[ 1.89999998e-01, 6.20000005e-01]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 8.90999973e-01, 6.99999988e-01],
[ 6.93000019e-01, 8.00000012e-01]]))
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('m', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('v', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('beta1_power', dtype=sig.sig_dtype.T1),
sig.make_sig('lr', dtype=sig.sig_dtype.T2),
sig.make_sig('beta1', dtype=sig.sig_dtype.T3),
sig.make_sig('beta2', dtype=sig.sig_dtype.T4),
sig.make_sig('epsilon', dtype=sig.sig_dtype.T5),
sig.make_sig('grad', dtype=sig.sig_dtype.T)
)
@prim_attr_register
def __init__(self):
"""Initialize ApplyAdaMax"""
self.add_prim_attr('side_effect_mem', True)
[docs]class ApplyAdadelta(Primitive):
r"""
Updates relevant entries according to the adadelta scheme.
.. math::
\begin{array}{ll} \\
accum = \rho * accum + (1 - \rho) * grad^2 \\
\text{update} = \sqrt{\text{accum_update} + \epsilon} * \frac{grad}{\sqrt{accum + \epsilon}} \\
\text{accum_update} = \rho * \text{accum_update} + (1 - \rho) * update^2 \\
var -= lr * update
\end{array}
where :math:`\rho` represents `rho`, :math:`\epsilon` represents `epsilon`.
Inputs of `var`, `accum`, `accum_update` and `grad` comply with the implicit type conversion rules
to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Inputs:
- **var** (Parameter) - Weights to be updated. With float32 or float16 data type.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **accum** (Parameter) - Accumulation to be updated, has the same shape and data type as `var`.
- **accum_update** (Parameter) - Accum_update to be updated, has the same shape and data type as `var`.
- **lr** (Union[Number, Tensor]) - Learning rate, must be a scalar. With float32 or float16 data type.
- **rho** (Union[Number, Tensor]) - Decay rate, must be a scalar. With float32 or float16 data type.
- **epsilon** (Union[Number, Tensor]) - A small value added for numerical stability, must be a scalar.
With float32 or float16 data type.
- **grad** (Tensor) - Gradients, has the same shape and data type as `var`.
Outputs:
Tuple of 3 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
- **accum_update** (Tensor) - The same shape and data type as `accum_update`.
Raises:
TypeError: If dtype of `var`, `accum`, `accum_update`, `lr`, `rho`, `epsilon` or `grad` is neither float16 nor
float32.
TypeError: If `accum_update`, `lr`, `rho` or `epsilon` is neither a Number nor a Tensor.
RuntimeError: If the data type of `var`, `accum`, `accum_update` and `grad` conversion of Parameter
is not supported.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import nn, Tensor, ops, Parameter
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.apply_adadelta = ops.ApplyAdadelta()
... self.var = Parameter(Tensor(np.array([[0.6, 0.4],
... [0.1, 0.5]]).astype(np.float32)), name="var")
... self.accum = Parameter(Tensor(np.array([[0.6, 0.5],
... [0.2, 0.6]]).astype(np.float32)), name="accum")
... self.accum_update = Parameter(Tensor(np.array([[0.9, 0.1],
... [0.7, 0.8]]).astype(np.float32)),
... name="accum_update")
... def construct(self, lr, rho, epsilon, grad):
... out = self.apply_adadelta(self.var, self.accum, self.accum_update, lr, rho, epsilon, grad)
... return out
...
>>> net = Net()
>>> lr = Tensor(0.001, mindspore.float32)
>>> rho = Tensor(0.0, mindspore.float32)
>>> epsilon = Tensor(1e-6, mindspore.float32)
>>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32))
>>> output = net(lr, rho, epsilon, grad)
>>> print(output)
(Tensor(shape=[2, 2], dtype=Float32, value=
[[ 5.99051356e-01, 3.99683774e-01],
[ 9.91633832e-02, 4.99105573e-01]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 9.00000036e-02, 4.89999980e-01],
[ 1.00000007e-02, 6.40000045e-01]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 8.99990976e-01, 1.00000791e-01],
[ 6.99930906e-01, 7.99999654e-01]]))
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('accum_update', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('lr', dtype=sig.sig_dtype.T1),
sig.make_sig('rho', dtype=sig.sig_dtype.T2),
sig.make_sig('epsilon', dtype=sig.sig_dtype.T3),
sig.make_sig('grad', dtype=sig.sig_dtype.T)
)
@prim_attr_register
def __init__(self):
"""Initialize ApplyAdadelta"""
self.add_prim_attr('side_effect_mem', True)
[docs]class ApplyAdagrad(Primitive):
r"""
Updates relevant entries according to the adagrad scheme.
The Adagrad algorithm was proposed in
`Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
<http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.
This module can adaptively assign different learning rates for each parameter in view of the uneven number
of samples for different parameters.
.. math::
\begin{array}{ll} \\
accum += grad * grad \\
var -= lr * grad * \frac{1}{\sqrt{accum}}
\end{array}
Inputs of `var`, `accum` and `grad` comply with the implicit type conversion rules
to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Args:
update_slots (bool): If `True`, `accum` will be updated. Default: True.
Inputs:
- **var** (Parameter) - Variable to be updated. With float32 or float16 data type.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **accum** (Parameter) - Accumulation to be updated. The shape and data type must be the same as `var`.
- **lr** (Union[Number, Tensor]) - The learning rate value, must be a scalar. With float32 or float16 data type.
- **grad** (Tensor) - A tensor for gradient. The shape and data type must be the same as `var`.
Outputs:
Tuple of 2 Tensors, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
Raises:
TypeError: If dtype of `var`, `accum`, `lr` or `grad` is neither float16 nor float32.
TypeError: If `lr` is neither a Number nor a Tensor.
RuntimeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported.
Supported Platforms:
``Ascend`` ``CPU`` ``GPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.apply_adagrad = ops.ApplyAdagrad()
... self.var = Parameter(Tensor(np.array([[0.6, 0.4],
... [0.1, 0.5]]).astype(np.float32)), name="var")
... self.accum = Parameter(Tensor(np.array([[0.6, 0.5],
... [0.2, 0.6]]).astype(np.float32)), name="accum")
... def construct(self, lr, grad):
... out = self.apply_adagrad(self.var, self.accum, lr, grad)
... return out
...
>>> net = Net()
>>> lr = Tensor(0.001, mindspore.float32)
>>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32))
>>> output = net(lr, grad)
>>> print(output)
(Tensor(shape=[2, 2], dtype=Float32, value=
[[ 5.99638879e-01, 3.99296492e-01],
[ 9.97817814e-02, 4.99281585e-01]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 6.90000057e-01, 9.90000010e-01],
[ 2.10000008e-01, 1.24000001e+00]]))
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('lr', dtype=sig.sig_dtype.T1),
sig.make_sig('grad', dtype=sig.sig_dtype.T)
)
@prim_attr_register
def __init__(self, update_slots=True):
"""Initialize ApplyAdagrad."""
validator.check_value_type("update_slots", update_slots, [bool], self.name)
self.add_prim_attr('side_effect_mem', True)
[docs]class ApplyAdagradV2(Primitive):
r"""
Updates relevant entries according to the adagradv2 scheme.
.. math::
\begin{array}{ll} \\
accum += grad * grad \\
var -= lr * grad * \frac{1}{\sqrt{accum} + \epsilon}
\end{array}
where :math:`\epsilon` represents `epsilon`.
Inputs of `var`, `accum` and `grad` comply with the implicit type conversion rules
to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Note:
The difference is that `ApplyAdagradV2` has one more small constant value than `ApplyAdagrad`.
Args:
epsilon (float): A small value added for numerical stability.
update_slots (bool): If `True`, `accum` will be updated. Default: True.
Inputs:
- **var** (Parameter) - Variable to be updated. With float16 or float32 data type.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **accum** (Parameter) - Accumulation to be updated. The shape and data type must be the same as `var`.
- **lr** (Union[Number, Tensor]) - The learning rate value, must be a float number or
a scalar tensor with float16 or float32 data type.
- **grad** (Tensor) - A tensor for gradient. The shape and data type must be the same as `var`.
Outputs:
Tuple of 2 Tensors, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
Raises:
TypeError: If dtype of `var`, `accum`, `lr` or `grad` is neither float16 nor float32.
TypeError: If `lr` is neither a Number nor a Tensor.
RuntimeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.apply_adagrad_v2 = ops.ApplyAdagradV2(epsilon=1e-6)
... self.var = Parameter(Tensor(np.array([[0.6, 0.4],
... [0.1, 0.5]]).astype(np.float32)), name="var")
... self.accum = Parameter(Tensor(np.array([[0.6, 0.5],
... [0.2, 0.6]]).astype(np.float32)), name="accum")
... def construct(self, lr, grad):
... out = self.apply_adagrad_v2(self.var, self.accum, lr, grad)
... return out
...
>>> net = Net()
>>> lr = Tensor(0.001, mindspore.float32)
>>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32))
>>> output = net(lr, grad)
>>> print(output)
(Tensor(shape=[2, 2], dtype=Float32, value=
[[ 5.99638879e-01, 3.99296492e-01],
[ 9.97817814e-02, 4.99281585e-01]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 6.90000057e-01, 9.90000010e-01],
[ 2.10000008e-01, 1.24000001e+00]]))
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('lr', dtype=sig.sig_dtype.T1),
sig.make_sig('grad', dtype=sig.sig_dtype.T)
)
@prim_attr_register
def __init__(self, epsilon, update_slots=True):
"""Initialize ApplyAdagradV2."""
validator.check_value_type("epsilon", epsilon, [float], self.name)
validator.check_value_type("update_slots", update_slots, [bool], self.name)
self.add_prim_attr('side_effect_mem', True)
[docs]class SparseApplyAdagrad(Primitive):
r"""
Updates relevant entries according to the adagrad scheme.
.. math::
\begin{array}{ll} \\
accum += grad * grad \\
var -= lr * grad * (1 / sqrt(accum))
\end{array}
Inputs of `var`, `accum` and `grad` comply with the implicit type conversion rules
to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Args:
lr (float): Learning rate.
update_slots (bool): If `True`, `accum` will be updated. Default: True.
use_locking (bool): If true, the `var` and `accum` tensors will be protected from being updated.
Default: False.
Inputs:
- **var** (Parameter) - Variable to be updated. The data type must be float16 or float32.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **accum** (Parameter) - Accumulation to be updated. The shape and data type must be the same as `var`.
- **grad** (Tensor) - Gradients has the same data type as `var` and
grad.shape[1:] = var.shape[1:] if var.shape > 1.
- **indices** (Tensor) - A vector of indices into the first dimension of `var` and `accum`.
The type must be int32 and indices.shape[0] = grad.shape[0].
Outputs:
Tuple of 2 tensors, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
Raises:
TypeError: If `lr` is not a float.
TypeError: If neither `update_slots` nor `use_locking` is a bool.
TypeError: If dtype of `var`, `accum` or `grad` is neither float16 nor float32.
TypeError: If dtype of `indices` is not int32.
RuntimeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported.
Supported Platforms:
``Ascend`` ``CPU`` ``GPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.sparse_apply_adagrad = ops.SparseApplyAdagrad(lr=1e-8)
... self.var = Parameter(Tensor(np.array([[[0.2]]]).astype(np.float32)), name="var")
... self.accum = Parameter(Tensor(np.array([[[0.1]]]).astype(np.float32)), name="accum")
... def construct(self, grad, indices):
... out = self.sparse_apply_adagrad(self.var, self.accum, grad, indices)
... return out
...
>>> net = Net()
>>> grad = Tensor(np.array([[[0.7]]]).astype(np.float32))
>>> indices = Tensor([0], mindspore.int32)
>>> output = net(grad, indices)
>>> print(output)
(Tensor(shape=[1, 1, 1], dtype=Float32, value=
[[[1.99999988e-01]]]), Tensor(shape=[1, 1, 1], dtype=Float32, value=
[[[1.00000001e-01]]]))
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('grad', dtype=sig.sig_dtype.T),
sig.make_sig('indices', dtype=sig.sig_dtype.T1)
)
@prim_attr_register
def __init__(self, lr, update_slots=True, use_locking=False):
"""Initialize SparseApplyAdagrad."""
validator.check_is_float(lr, "lr", self.name)
validator.check_value_type("update_slots", update_slots, [bool], self.name)
validator.check_value_type("use_locking", use_locking, [bool], self.name)
self.add_prim_attr('side_effect_mem', True)
[docs]class SparseApplyAdagradV2(Primitive):
r"""
Updates relevant entries according to the adagrad scheme, one more epsilon attribute than SparseApplyAdagrad.
.. math::
\begin{array}{ll} \\
accum += grad * grad \\
var -= lr * grad * \frac{1}{\sqrt{accum} + \epsilon}
\end{array}
where :math:`\epsilon` represents `epsilon`.
Inputs of `var`, `accum` and `grad` comply with the implicit type conversion rules
to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Args:
lr (float): Learning rate.
epsilon (float): A small value added for numerical stability.
use_locking (bool): If `True`, the `var` and `accum` tensors will be protected from being updated.
Default: False.
update_slots (bool): If `True`, the computation logic will be different to `False`. Default: True.
Inputs:
- **var** (Parameter) - Variable to be updated. The data type must be float16 or float32.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **accum** (Parameter) - Accumulation to be updated. The shape and data type must be the same as `var`.
- **grad** (Tensor) - Gradients has the same data type as `var` and
grad.shape[1:] = var.shape[1:] if var.shape > 1.
- **indices** (Tensor) - A vector of indices into the first dimension of `var` and `accum`.
The type must be int32 and indices.shape[0] = grad.shape[0].
Outputs:
Tuple of 2 tensors, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
Raises:
TypeError: If neither `lr` nor `epsilon` is a float.
TypeError: If neither `update_slots` nor `use_locking` is a bool.
TypeError: If dtype of `var`, `accum` or `grad` is neither float16 nor float32.
TypeError: If dtype of `indices` is not int32.
RuntimeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported.
Supported Platforms:
``Ascend`` ``CPU`` ``GPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.sparse_apply_adagrad_v2 = ops.SparseApplyAdagradV2(lr=1e-8, epsilon=1e-6)
... self.var = Parameter(Tensor(np.array([[0.2]]).astype(np.float32)), name="var")
... self.accum = Parameter(Tensor(np.array([[0.1]]).astype(np.float32)), name="accum")
...
... def construct(self, grad, indices):
... out = self.sparse_apply_adagrad_v2(self.var, self.accum, grad, indices)
... return out
...
>>> net = Net()
>>> grad = Tensor(np.array([[0.7]]).astype(np.float32))
>>> indices = Tensor(np.ones([1]), mindspore.int32)
>>> output = net(grad, indices)
>>> print(output)
(Tensor(shape=[1, 1], dtype=Float32, value=
[[ 2.00000003e-01]]), Tensor(shape=[1, 1], dtype=Float32, value=
[[ 1.00000001e-01]]))
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('grad', dtype=sig.sig_dtype.T),
sig.make_sig('indices', dtype=sig.sig_dtype.T1)
)
@prim_attr_register
def __init__(self, lr, epsilon, use_locking=False, update_slots=True):
"""Initialize SparseApplyAdagradV2."""
self.lr = validator.check_value_type("lr", lr, [float], self.name)
self.epsilon = validator.check_value_type("epsilon", epsilon, [float], self.name)
self.use_locking = validator.check_value_type("update_slots", update_slots, [bool], self.name)
self.update_slots = validator.check_value_type("use_locking", use_locking, [bool], self.name)
self.add_prim_attr('side_effect_mem', True)
[docs]class ApplyProximalAdagrad(Primitive):
r"""
Updates relevant entries according to the proximal adagrad algorithm.
The proximal adagrad algorithm was proposed in `Efficient Learning using Forward-Backward Splitting
<http://papers.nips.cc//paper/3793-efficient-learning-using-forward-backward-splitting.pdf>`_.
.. math::
\begin{array}{ll} \\
accum += grad * grad \\
\text{prox_v} = var - lr * grad * \frac{1}{\sqrt{accum}} \\
var = \frac{sign(\text{prox_v})}{1 + lr * l2} * \max(\left| \text{prox_v} \right| - lr * l1, 0)
\end{array}
Inputs of `var`, `accum` and `grad` comply with the implicit type conversion rules
to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Args:
use_locking (bool): If true, the var and accumulation tensors will be protected from being updated.
Default: False.
Inputs:
- **var** (Parameter) - Variable to be updated. The data type must be float16 or float32.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **accum** (Parameter) - Accumulation to be updated, must have the same shape and dtype as `var`.
- **lr** (Union[Number, Tensor]) - The learning rate value, must be a scalar. The data type must be
float16 or float32.
- **l1** (Union[Number, Tensor]) - l1 regularization strength, must be a scalar. The data type must be
float16 or float32.
- **l2** (Union[Number, Tensor]) - l2 regularization strength, must be a scalar. The data type must be
float16 or float32.
- **grad** (Tensor) - Gradient with the same shape and dtype as `var`.
Outputs:
Tuple of 2 Tensors, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
Raises:
TypeError: If `use_blocking` is not a bool.
TypeError: If dtype of `var`, `lr`, `l1` or `l2` is neither float16 nor float32.
TypeError: If `lr`, `l1` or `l2` is neither a Number nor a Tensor.
TypeError: If `grad` is not a Tensor.
RuntimeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.apply_proximal_adagrad = ops.ApplyProximalAdagrad()
... self.var = Parameter(Tensor(np.array([[0.6, 0.4],
... [0.1, 0.5]]).astype(np.float32)), name="var")
... self.accum = Parameter(Tensor(np.array([[0.6, 0.5],
... [0.2, 0.6]]).astype(np.float32)), name="accum")
... self.lr = 0.01
... self.l1 = 0.0
... self.l2 = 0.0
... def construct(self, grad):
... out = self.apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad)
... return out
...
>>> net = Net()
>>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32))
>>> output = net(grad)
>>> print(output)
(Tensor(shape=[2, 2], dtype=Float32, value=
[[ 5.96388459e-01, 3.92964751e-01],
[ 9.78178233e-02, 4.92815793e-01]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 6.90000057e-01, 9.90000010e-01],
[ 2.10000008e-01, 1.24000001e+00]]))
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('lr', dtype=sig.sig_dtype.T1),
sig.make_sig('l1', dtype=sig.sig_dtype.T2),
sig.make_sig('l2', dtype=sig.sig_dtype.T3),
sig.make_sig('grad', dtype=sig.sig_dtype.T)
)
@prim_attr_register
def __init__(self, use_locking=False):
"""Initialize ApplyProximalAdagrad."""
self.init_prim_io_names(inputs=['var', 'accum', 'lr', 'l1', 'l2', 'grad'],
outputs=['var', 'accum'])
self.add_prim_attr('side_effect_mem', True)
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
[docs]class SparseApplyProximalAdagrad(PrimitiveWithCheck):
r"""
Updates relevant entries according to the proximal adagrad algorithm. Compared with ApplyProximalAdagrad,
an additional index tensor is input.
.. math::
\begin{array}{ll} \\
accum += grad * grad \\
\text{prox_v} = var - lr * grad * \frac{1}{\sqrt{accum}} \\
var = \frac{sign(\text{prox_v})}{1 + lr * l2} * \max(\left| \text{prox_v} \right| - lr * l1, 0)
\end{array}
Inputs of `var`, `accum` and `grad` comply with the implicit type conversion rules
to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Args:
use_locking (bool): If true, the `var` and `accum` tensors will be protected from being updated.
Default: False.
Inputs:
- **var** (Parameter) - Variable tensor to be updated. The data type must be float16 or float32.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **accum** (Parameter) - Variable tensor to be updated, has the same shape and dtype as `var`.
- **lr** (Union[Number, Tensor]) - The learning rate value, must be a float number or
a scalar tensor with float16 or float32 data type.
- **l1** (Union[Number, Tensor]) - l1 regularization strength, must be a float number or
a scalar tensor with float16 or float32 data type.
- **l2** (Union[Number, Tensor]) - l2 regularization strength, must be a float number or
a scalar tensor with float16 or float32 data type.
- **grad** (Tensor) - A tensor of the same type as `var` and
grad.shape[1:] = var.shape[1:] if var.shape > 1.
- **indices** (Tensor) - A tensor of indices in the first dimension of `var` and `accum`.
If there are duplicates in `indices`, the behavior is undefined. Must be one of the
following types: int32, int64 and indices.shape[0] = grad.shape[0].
Outputs:
Tuple of 2 tensors, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
Raises:
TypeError: If `use_locking` is not a bool.
TypeError: If dtype of `var`, `accum`, `lr`, `l1`, `l2` or `grad` is neither float16 nor float32.
TypeError: If dtype of `indices` is neither int32 nor int64.
RuntimeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.sparse_apply_proximal_adagrad = ops.SparseApplyProximalAdagrad()
... self.var = Parameter(Tensor(np.array([[4.1, 7.2], [1.1, 3.0]], np.float32)), name="var")
... self.accum = Parameter(Tensor(np.array([[0, 0], [0, 0]], np.float32)), name="accum")
... self.lr = 1.0
... self.l1 = 1.0
... self.l2 = 0.0
... def construct(self, grad, indices):
... out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1,
... self.l2, grad, indices)
... return out
...
>>> net = Net()
>>> grad = Tensor(np.array([[1, 1], [1, 1]], np.float32))
>>> indices = Tensor(np.array([0, 1], np.int32))
>>> output = net(grad, indices)
>>> print(output)
(Tensor(shape=[2, 2], dtype=Float32, value=
[[ 2.09999990e+00, 5.19999981e+00],
[ 0.00000000e+00, 1.00000000e+00]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 1.00000000e+00, 1.00000000e+00],
[ 1.00000000e+00, 1.00000000e+00]]))
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('lr', dtype=sig.sig_dtype.T1),
sig.make_sig('l1', dtype=sig.sig_dtype.T2),
sig.make_sig('l2', dtype=sig.sig_dtype.T3),
sig.make_sig('grad', dtype=sig.sig_dtype.T),
sig.make_sig('indices', dtype=sig.sig_dtype.T4)
)
@prim_attr_register
def __init__(self, use_locking=False):
"""Initialize SparseApplyProximalAdagrad."""
self.init_prim_io_names(inputs=['var', 'accum', 'lr', 'l1', 'l2', 'grad', 'indices'],
outputs=['var', 'accum'])
self.add_prim_attr('side_effect_mem', True)
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
def check_shape(self, var_shape, accum_shape, lr_shape, l1_shape, l2_shape,
grad_shape, indices_shape):
validator.check_int(len(indices_shape), 1, Rel.EQ, "indices rank", self.name)
def check_dtype(self, var_dtype, accum_dtype, lr_dtype, l1_dtype, l2_dtype,
grad_dtype, indices_dtype):
args = {'var': var_dtype, 'accum': accum_dtype, 'grad': grad_dtype}
validator.check_tensors_dtypes_same_and_valid(args, [mstype.float16, mstype.float32], self.name)
validator.check_scalar_or_tensor_types_same({"lr": lr_dtype}, [mstype.float16, mstype.float32], self.name)
validator.check_scalar_or_tensor_types_same({"l1": l1_dtype}, [mstype.float16, mstype.float32], self.name)
validator.check_scalar_or_tensor_types_same({"l2": l2_dtype}, [mstype.float16, mstype.float32], self.name)
valid_dtypes = [mstype.int32, mstype.int64]
validator.check_tensor_dtype_valid('indices', indices_dtype, valid_dtypes, self.name)
[docs]class ApplyAddSign(Primitive):
r"""
Updates relevant entries according to the AddSign algorithm.
.. math::
\begin{array}{ll} \\
m_{t+1} = \beta * m_{t} + (1 - \beta) * g \\
\text{update} = (\alpha + \text{sign_decay} * sign(g) * sign(m)) * g \\
var = var - lr_{t+1} * \text{update}
\end{array}
:math:`t` represents updating step while :math:`m` represents the 1st moment vector, :math:`m_{t}`
is the last moment of :math:`m_{t+1}`, :math:`lr` represents scaling factor `lr`, :math:`g` represents `grad`,
:math:`\alpha` represents `alpha`, :math:`\beta` represents `beta`.
Inputs of `var`, `accum` and `grad` comply with the implicit type conversion rules
to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Inputs:
- **var** (Parameter) - Variable tensor to be updated. With float32 or float16 data type.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **m** (Parameter) - Variable tensor to be updated, has the same shape and data type as `var`.
- **lr** (Union[Number, Tensor]) - The learning rate value, must be a scalar.
With float32 or float16 data type.
- **alpha** (Union[Number, Tensor]) - Must be a scalar. With float32 or float16 data type.
- **sign_decay** (Union[Number, Tensor]) - Must be a scalar. With float32 or float16 data type.
- **beta** (Union[Number, Tensor]) - The exponential decay rate, must be a scalar.
With float32 or float16 data type.
- **grad** (Tensor) - A tensor of the same shape and data type as `var`, for the gradient.
Outputs:
Tuple of 2 Tensors, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **m** (Tensor) - The same shape and data type as `m`.
Raises:
TypeError: If dtype of `var`, `lr`, `alpha`, `sign_decay` or `beta` is neither float16 nor float32.
TypeError: If `lr`, `alpha` or `sign_decay` is neither a Number nor a Tensor.
TypeError: If `grad` is not a Tensor.
RuntimeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported.
Supported Platforms:
``Ascend``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.apply_add_sign = ops.ApplyAddSign()
... self.var = Parameter(Tensor(np.array([[0.6, 0.4],
... [0.1, 0.5]]).astype(np.float32)), name="var")
... self.m = Parameter(Tensor(np.array([[0.6, 0.5],
... [0.2, 0.6]]).astype(np.float32)), name="m")
... self.lr = 0.001
... self.alpha = 1.0
... self.sign_decay = 0.99
... self.beta = 0.9
... def construct(self, grad):
... out = self.apply_add_sign(self.var, self.m, self.lr, self.alpha, self.sign_decay, self.beta, grad)
... return out
...
>>> net = Net()
>>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32))
>>> output = net(grad)
>>> print(output)
(Tensor(shape=[2, 2], dtype=Float32, value=
[[ 5.99403024e-01, 3.98607016e-01],
[ 9.98010039e-02, 4.98407990e-01]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 5.70000052e-01, 5.19999981e-01],
[ 1.89999998e-01, 6.20000064e-01]]))
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('m', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('lr', dtype=sig.sig_dtype.T1),
sig.make_sig('alpha', dtype=sig.sig_dtype.T2),
sig.make_sig('sign_decay', dtype=sig.sig_dtype.T3),
sig.make_sig('beta', dtype=sig.sig_dtype.T3),
sig.make_sig('grad', dtype=sig.sig_dtype.T)
)
@prim_attr_register
def __init__(self):
"""Initialize ApplyAddSign."""
self.add_prim_attr('side_effect_mem', True)
[docs]class ApplyPowerSign(Primitive):
r"""
Updates relevant entries according to the AddSign algorithm.
The AddSign algorithm was proposed in `Neural Optimizer Search with Reinforcement Learning
<https://arxiv.org/abs/1709.07417>`_.
.. math::
\begin{array}{ll} \\
m_{t+1} = \beta * m_{t} + (1 - \beta) * g \\
\text{update} = \exp(\text{logbase} * \text{sign_decay} * sign(g) * sign(m)) * g \\
var = var - lr_{t+1} * \text{update}
\end{array}
:math:`t` represents updating step while :math:`m` represents the 1st moment vector, :math:`m_{t}`
is the last moment of :math:`m_{t+1}`, :math:`lr` represents scaling factor `lr`, :math:`g` represents `grad`,
:math:`\beta` represents `beta`.
All of inputs comply with the implicit type conversion rules to make the data types consistent.
If `lr`, `logbase`, `sign_decay` or `beta` is a number, the number is automatically converted to Tensor,
and the data type is consistent with the Tensor data type involved in the operation.
If inputs are tensors and have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Note:
On Ascend, input data type of float64 is currently not supported.
Inputs:
- **var** (Parameter) - Variable tensor to be updated. With float64, float32 or float16 data type.
If data type of `var` is float16, all inputs must have the same data type as `var`.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **m** (Parameter) - Variable tensor to be updated, has the same shape and data type as `var`.
- **lr** (Union[Number, Tensor]) - The learning rate value, should be a scalar or Tensor
with float64, float32 or float16 data type.
- **logbase** (Union[Number, Tensor]) - Should be a scalar or Tensor with float64, float32 or float16 data type.
- **sign_decay** (Union[Number, Tensor]) - Should be a scalar or Tensor with float64, float32 or
float16 data type.
- **beta** (Union[Number, Tensor]) - The exponential decay rate, should be a scalar or Tensor
with float64, float32 or float16 data type.
- **grad** (Tensor) - A tensor of the same shape and data type as `var`, for the gradient.
Outputs:
Tuple of 2 Tensors, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **m** (Tensor) - The same shape and data type as `m`.
Raises:
TypeError: If dtype of `var`, `lr`, `logbase`, `sign_decay`, `beta` or `grad` is not one of float16,
float32 or float64.
TypeError: If `lr`, `logbase`, `sign_decay` or `beta` is neither a Number nor a Tensor.
TypeError: If `grad` is not a Tensor.
RuntimeError: If the data type of `lr`, `logbase`, `sign_decay` and `grad` conversion of Parameter
is not supported.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.apply_power_sign = ops.ApplyPowerSign()
... self.var = Parameter(Tensor(np.array([[0.6, 0.4],
... [0.1, 0.5]]).astype(np.float32)), name="var")
... self.m = Parameter(Tensor(np.array([[0.6, 0.5],
... [0.2, 0.6]]).astype(np.float32)), name="m")
... self.lr = 0.001
... self.logbase = np.e
... self.sign_decay = 0.99
... self.beta = 0.9
... def construct(self, grad):
... out = self.apply_power_sign(self.var, self.m, self.lr, self.logbase,
... self.sign_decay, self.beta, grad)
... return out
...
>>> net = Net()
>>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32))
>>> output = net(grad)
>>> print(output)
(Tensor(shape=[2, 2], dtype=Float32, value=
[[ 5.95575690e-01, 3.89676481e-01],
[ 9.85252112e-02, 4.88201708e-01]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 5.70000052e-01, 5.19999981e-01],
[ 1.89999998e-01, 6.20000064e-01]]))
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('m', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('lr', dtype=sig.sig_dtype.T),
sig.make_sig('logbase', dtype=sig.sig_dtype.T),
sig.make_sig('sign_decay', dtype=sig.sig_dtype.T),
sig.make_sig('beta', dtype=sig.sig_dtype.T),
sig.make_sig('grad', dtype=sig.sig_dtype.T)
)
@prim_attr_register
def __init__(self):
"""Initialize ApplyPowerSign."""
self.add_prim_attr('side_effect_mem', True)
[docs]class ApplyGradientDescent(Primitive):
r"""
Updates `var` by subtracting `alpha` * `delta` from it.
.. math::
var = var - \alpha * \delta
where :math:`\alpha` represents `alpha`, :math:`\delta` represents `delta`.
Inputs of `var` and `delta` comply with the implicit type conversion rules to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Inputs:
- **var** (Parameter) - Variable tensor to be updated. With float32 or float16 data type.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **alpha** (Union[Number, Tensor]) - Scaling factor, must be a scalar. With float32 or float16 data type.
- **delta** (Tensor) - A tensor for the change, has the same shape and data type as `var`.
Outputs:
Tensor, represents the updated `var`.
Raises:
TypeError: If dtype of `var` or `alpha` is neither float16 nor float32.
TypeError: If `delta` is not a Tensor.
TypeError: If `alpha` is neither a Number nor a Tensor.
RuntimeError: If the data type of `var` and `delta` conversion of Parameter is not supported.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.apply_gradient_descent = ops.ApplyGradientDescent()
... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var")
... self.alpha = 0.001
... def construct(self, delta):
... out = self.apply_gradient_descent(self.var, self.alpha, delta)
... return out
...
>>> net = Net()
>>> delta = Tensor(np.array([[0.1, 0.1], [0.1, 0.1]]).astype(np.float32))
>>> output = net(delta)
>>> print(output)
[[0.9999 0.9999]
[0.9999 0.9999]]
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('alpha', dtype=sig.sig_dtype.T1),
sig.make_sig('delta', dtype=sig.sig_dtype.T)
)
@prim_attr_register
def __init__(self):
"""Initialize ApplyGradientDescent."""
self.add_prim_attr('side_effect_mem', True)
[docs]class ApplyProximalGradientDescent(Primitive):
r"""
Updates relevant entries according to the FOBOS(Forward Backward Splitting) algorithm.
Refer to the paper `Efficient Learning using Forward-Backward Splitting
<http://papers.nips.cc//paper/3793-efficient-learning-using-forward-backward-splitting.pdf>`_ for more detail。
.. math::
\begin{array}{ll} \\
\text{prox_v} = var - \alpha * \delta \\
var = \frac{sign(\text{prox_v})}{1 + \alpha * l2} * \max(\left| \text{prox_v} \right| - \alpha * l1, 0)
\end{array}
where :math:`\alpha` represents `alpha`, :math:`\delta` represents `delta`.
Inputs of `var` and `delta` comply with the implicit type conversion rules to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Inputs:
- **var** (Parameter) - Variable tensor to be updated. With float32 or float16 data type.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **alpha** (Union[Number, Tensor]) - Scaling factor, must be a scalar. With float32 or float16 data type.
- **l1** (Union[Number, Tensor]) - l1 regularization strength, must be a scalar.
With float32 or float16 data type.
- **l2** (Union[Number, Tensor]) - l2 regularization strength, must be a scalar.
With float32 or float16 data type.
- **delta** (Tensor) - A tensor for the change, has the same shape and data type as `var`.
Outputs:
Tensor, represents the updated `var`.
Raises:
TypeError: If dtype of `var`, `alpha`, `l1` or `l2` is neither float16 nor float32.
TypeError: If `alpha`, `l1` or `l2` is neither a Number nor a Tensor.
TypeError: If `delta` is not a Tensor.
RuntimeError: If the data type of `var`, and `delta` conversion of Parameter is not supported.
Supported Platforms:
``Ascend``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.apply_proximal_gradient_descent = ops.ApplyProximalGradientDescent()
... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var")
... self.alpha = 0.001
... self.l1 = 0.1
... self.l2 = 0.1
... def construct(self, delta):
... out = self.apply_proximal_gradient_descent(self.var, self.alpha, self.l1, self.l2, delta)
... return out
...
>>> net = Net()
>>> delta = Tensor(np.array([[0.1, 0.1], [0.1, 0.1]]).astype(np.float32))
>>> output = net(delta)
>>> print(output)
[[0.99969995 0.99969995]
[0.99969995 0.99969995]]
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('alpha', dtype=sig.sig_dtype.T1),
sig.make_sig('l1', dtype=sig.sig_dtype.T2),
sig.make_sig('l2', dtype=sig.sig_dtype.T3),
sig.make_sig('delta', dtype=sig.sig_dtype.T)
)
@prim_attr_register
def __init__(self):
"""Initialize ApplyGradientDescent."""
self.add_prim_attr('side_effect_mem', True)
[docs]class LARSUpdate(PrimitiveWithInfer):
"""
Conducts LARS (layer-wise adaptive rate scaling) update on the sum of squares of gradient.
For more details, please refer to :class:`mindspore.nn.LARS`.
Args:
epsilon (float): Term added to the denominator to improve numerical stability. Default: 1e-05.
hyperpara (float): Trust coefficient for calculating the local learning rate. Default: 0.001.
use_clip (bool): Whether to use clip operation for calculating the local learning rate. Default: False.
Inputs:
- **weight** (Tensor) - A tensor, representing the weight.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **gradient** (Tensor) - The gradient of weight, which has the same shape and dtype with weight.
- **norm_weight** (Tensor) - A scalar tensor, representing the sum of squares of weight.
- **norm_gradient** (Tensor) - A scalar tensor, representing the sum of squares of gradient.
- **weight_decay** (Union[Number, Tensor]) - Weight decay. It must be a scalar tensor or number.
- **learning_rate** (Union[Number, Tensor]) - Learning rate. It must be a scalar tensor or number.
Outputs:
Tensor, represents the new gradient.
Raises:
TypeError: If neither `epsilon` nor `hyperpara` is a float.
TypeError: If `use_clip` is not a bool.
TypeError: If `weight`, `gradient`, `norm_weight` or `norm_gradient` is not a Tensor.
TypeError: If `weight_decay` or `learning_rate` is neither a Number nor a Tensor.
TypeError: If shape of `gradient` is not the same as `weight`.
Supported Platforms:
``Ascend``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.lars = ops.LARSUpdate()
... self.reduce = ops.ReduceSum()
... self.square = ops.Square()
... def construct(self, weight, gradient):
... w_square_sum = self.reduce(self.square(weight))
... grad_square_sum = self.reduce(self.square(gradient))
... grad_t = self.lars(weight, gradient, w_square_sum, grad_square_sum, 0.0, 1.0)
... return grad_t
...
>>> weight = Tensor(np.array([[0.5, 0.8, 0.2], [0.6, 0.4, 0.2]]).astype(np.float32))
>>> gradient = Tensor(np.array([[0.4, 0.4, 0.5], [0.2, 0.4, 0.3]]).astype(np.float32))
>>> net = Net()
>>> output = net(Tensor(weight), Tensor(gradient))
>>> print(output)
[[0.0005265 0.0005265 0.00065813]
[0.00026325 0.0005265 0.00039488]]
"""
@prim_attr_register
def __init__(self, epsilon=1e-05, hyperpara=0.001, use_clip=False):
"""Initialize LARSUpdate."""
validator.check_value_type("epsilon", epsilon, [float], self.name)
validator.check_value_type("hyperpara", hyperpara, [float], self.name)
validator.check_value_type("use_clip", use_clip, [bool], self.name)
[docs]class ApplyFtrl(Primitive):
"""
Updates relevant entries according to the FTRL scheme.
For more details, please refer to :class:`mindspore.nn.FTRL`.
Args:
use_locking (bool): Use locks for updating operation if true . Default: False.
Inputs:
- **var** (Parameter) - The variable to be updated. The data type must be float16 or float32.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **accum** (Parameter) - The accumulation to be updated, must be same shape and data type as `var`.
- **linear** (Parameter) - The linear coefficient to be updated, must be same shape and data type as `var`.
- **grad** (Tensor) - Gradient. The data type must be float16 or float32.
- **lr** (Union[Number, Tensor]) - The learning rate value, must be positive. Default: 0.001.
It must be a float number or a scalar tensor with float16 or float32 data type.
- **l1** (Union[Number, Tensor]) - l1 regularization strength, must be greater than or equal to zero.
Default: 0.0. It must be a float number or a scalar tensor with float16 or float32 data type.
- **l2** (Union[Number, Tensor]) - l2 regularization strength, must be greater than or equal to zero.
Default: 0.0. It must be a float number or a scalar tensor with float16 or float32 data type.
- **lr_power** (Union[Number, Tensor]) - Learning rate power controls how the learning rate decreases
during training, must be less than or equal to zero. Use fixed learning rate if lr_power is zero.
Default: -0.5. It must be a float number or a scalar tensor with float16 or float32 data type.
Outputs:
- **var** (Tensor) - Represents the updated `var`. As the input parameters has been updated in-place, this
value is always zero when the platform is GPU.
Raises:
TypeError: If `use_locking` is not a bool.
TypeError: If dtype of `var`, `grad`, `lr`, `l1`, `l2` or `lr_power` is neither float16 nor float32.
TypeError: If `lr`, `l1`, `l2` or `lr_power` is neither a Number nor a Tensor.
TypeError: If `grad` is not a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class ApplyFtrlNet(nn.Cell):
... def __init__(self):
... super(ApplyFtrlNet, self).__init__()
... self.apply_ftrl = ops.ApplyFtrl()
... self.lr = 0.001
... self.l1 = 0.0
... self.l2 = 0.0
... self.lr_power = -0.5
... self.var = Parameter(Tensor(np.array([[0.6, 0.4],
... [0.1, 0.5]]).astype(np.float32)), name="var")
... self.accum = Parameter(Tensor(np.array([[0.6, 0.5],
... [0.2, 0.6]]).astype(np.float32)), name="accum")
... self.linear = Parameter(Tensor(np.array([[0.9, 0.1],
... [0.7, 0.8]]).astype(np.float32)), name="linear")
...
... def construct(self, grad):
... out = self.apply_ftrl(self.var, self.accum, self.linear, grad, self.lr, self.l1, self.l2,
... self.lr_power)
... return out
...
>>> net = ApplyFtrlNet()
>>> input_x = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32))
>>> output = net(input_x)
>>> print(net.var.asnumpy())
[[ 0.0390525 0.11492836]
[ 0.00066425 0.15075898]]
"""
@prim_attr_register
def __init__(self, use_locking=False):
"""Initialize ApplyFtrl."""
self.init_prim_io_names(inputs=['var', 'accum', 'linear', 'grad', 'lr', 'l1', 'l2', 'lr_power'],
outputs=['output'])
self.add_prim_attr('side_effect_mem', True)
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
[docs]class SparseApplyFtrl(Primitive):
"""
Updates relevant entries according to the FTRL-proximal scheme
For more details, please refer to :class:`mindspore.nn.FTRL`.
All of inputs except `indices` comply with the implicit type conversion rules to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Args:
lr (float): The learning rate value, must be positive.
l1 (float): l1 regularization strength, must be greater than or equal to zero.
l2 (float): l2 regularization strength, must be greater than or equal to zero.
lr_power (float): Learning rate power controls how the learning rate decreases during training,
must be less than or equal to zero. Use fixed learning rate if `lr_power` is zero.
use_locking (bool): Use locks for updating operation if true . Default: False.
Inputs:
- **var** (Parameter) - The variable to be updated. The data type must be float16 or float32.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **accum** (Parameter) - The accumulation to be updated, must be same data type and shape as `var`.
- **linear** (Parameter) - The linear coefficient to be updated, must be the same data type and shape as `var`.
- **grad** (Tensor) - A tensor of the same type as `var` and grad.shape[1:] = var.shape[1:] if var.shape > 1.
- **indices** (Tensor) - A tensor of indices in the first dimension of `var` and `accum`.
If there are duplicates in `indices`, the behavior is undefined.
The type must be int32 or int64 and indices.shape[0] = grad.shape[0].
Outputs:
- **var** (Tensor) - Tensor, has the same shape and data type as `var`.
- **accum** (Tensor) - Tensor, has the same shape and data type as `accum`.
- **linear** (Tensor) - Tensor, has the same shape and data type as `linear`.
Raises:
TypeError: If `lr`, `l1`, `l2` or `lr_power` is not a float.
TypeError: If `use_locking` is not a bool.
TypeError: If dtype of `var`, `accum`, `linear` or `grad` is neither float16 nor float32.
TypeError: If dtype of `indices` is neither int32 nor int64.
RuntimeError: If the data type of all of inputs except `indices` conversion of Parameter is not supported.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class SparseApplyFtrlNet(nn.Cell):
... def __init__(self):
... super(SparseApplyFtrlNet, self).__init__()
... self.sparse_apply_ftrl = ops.SparseApplyFtrl(lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5)
... self.var = Parameter(Tensor(np.array([[0.2]]).astype(np.float32)), name="var")
... self.accum = Parameter(Tensor(np.array([[0.1]]).astype(np.float32)), name="accum")
... self.linear = Parameter(Tensor(np.array([[0.6]]).astype(np.float32)), name="linear")
...
... def construct(self, grad, indices):
... out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices)
... return out
...
>>> net = SparseApplyFtrlNet()
>>> grad = Tensor(np.array([[0.7]]).astype(np.float32))
>>> indices = Tensor(np.ones([1]), mindspore.int32)
>>> output = net(grad, indices)
>>> print(output)
(Tensor(shape=[1, 1], dtype=Float32, value=
[[2.00000003e-01]]), Tensor(shape=[1, 1], dtype=Float32, value=
[[1.00000001e-01]]), Tensor(shape=[1, 1], dtype=Float32, value=
[[6.00000024e-01]]))
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('linear', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('grad', dtype=sig.sig_dtype.T),
sig.make_sig('indices', dtype=sig.sig_dtype.T1)
)
@prim_attr_register
def __init__(self, lr, l1, l2, lr_power, use_locking=False):
"""Initialize SparseApplyFtrl."""
validator.check_value_type("lr", lr, [float], self.name)
validator.check_value_type("l1", l1, [float], self.name)
validator.check_value_type("l2", l2, [float], self.name)
validator.check_value_type("lr_power", lr_power, [float], self.name)
self.lr = validator.check_positive_float(lr, "lr", self.name)
self.l1 = validator.check_non_negative_float(l1, "l1", self.name)
self.l2 = validator.check_non_negative_float(l2, "l2", self.name)
self.lr_power = validator.check_number("lr_power", lr_power, 0, Rel.LE, self.name)
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
self.init_prim_io_names(inputs=['var', 'accum', 'linear', 'grad', 'indices'],
outputs=['var', 'accum', 'linear'])
self.add_prim_attr('side_effect_mem', True)
[docs]class SparseApplyFtrlV2(PrimitiveWithInfer):
"""
Updates relevant entries according to the FTRL-proximal scheme. This class has one more attribute, named
l2_shrinkage, than class SparseApplyFtrl.
All of inputs except `indices` comply with the implicit type conversion rules to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Args:
lr (float): The learning rate value, must be positive.
l1 (float): l1 regularization strength, must be greater than or equal to zero.
l2 (float): l2 regularization strength, must be greater than or equal to zero.
l2_shrinkage (float): L2 shrinkage regularization.
lr_power (float): Learning rate power controls how the learning rate decreases during training,
must be less than or equal to zero. Use fixed learning rate if `lr_power` is zero.
use_locking (bool): If `True`, the var and accumulation tensors will be protected from being updated.
Default: False.
Inputs:
- **var** (Parameter) - The variable to be updated. The data type must be float16 or float32.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **accum** (Parameter) - The accumulation to be updated, must be same data type and shape as `var`.
- **linear** (Parameter) - the linear coefficient to be updated, must be same data type and shape as `var`.
- **grad** (Tensor) - A tensor of the same type as `var` and grad.shape[1:] = var.shape[1:] if var.shape > 1.
- **indices** (Tensor) - A vector of indices in the first dimension of `var` and `accum`.
The type must be int32 and indices.shape[0] = grad.shape[0].
Outputs:
Tuple of 3 Tensor, the updated parameters.
- **var** (Tensor) - Tensor, has the same shape and data type as `var`.
- **accum** (Tensor) - Tensor, has the same shape and data type as `accum`.
- **linear** (Tensor) - Tensor, has the same shape and data type as `linear`.
Raises:
TypeError: If `lr`, `l1`, `l2`, `lr_power` or `use_locking` is not a float.
TypeError: If `use_locking` is not a bool.
TypeError: If dtype of `var`, `accum`, `linear` or `grad` is neither float16 nor float32.
TypeError: If dtype of `indices` is not int32.
RuntimeError: If the data type of all of inputs except `indices` conversion of Parameter is not supported.
Supported Platforms:
``Ascend``
Examples:
>>> class SparseApplyFtrlV2Net(nn.Cell):
... def __init__(self):
... super(SparseApplyFtrlV2Net, self).__init__()
... self.sparse_apply_ftrl_v2 = ops.SparseApplyFtrlV2(lr=0.01, l1=0.0, l2=0.0,
... l2_shrinkage=0.0, lr_power=-0.5)
... self.var = Parameter(Tensor(np.array([[0.2, 0.3]]).astype(np.float32)), name="var")
... self.accum = Parameter(Tensor(np.array([[0.5, 0.9]]).astype(np.float32)), name="accum")
... self.linear = Parameter(Tensor(np.array([[0.7, 0.5]]).astype(np.float32)), name="linear")
...
... def construct(self, grad, indices):
... out = self.sparse_apply_ftrl_v2(self.var, self.accum, self.linear, grad, indices)
... return out
...
>>> net = SparseApplyFtrlV2Net()
>>> grad = Tensor(np.array([[0.8, 0.5]]).astype(np.float32))
>>> indices = Tensor(np.ones([1]), mindspore.int32)
>>> output = net(grad, indices)
>>> print(output)
(Tensor(shape=[1, 2], dtype=Float32, value=
[[ 2.00000003e-01, 3.00000012e-01]]), Tensor(shape=[1, 2], dtype=Float32, value=
[[ 5.00000000e-01, 8.99999976e-01]]), Tensor(shape=[1, 2], dtype=Float32, value=
[[ 6.99999988e-01, 5.00000000e-01]]))
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('linear', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('grad', dtype=sig.sig_dtype.T),
sig.make_sig('indices', dtype=sig.sig_dtype.T1)
)
@prim_attr_register
def __init__(self, lr, l1, l2, l2_shrinkage, lr_power, use_locking=False):
"""Initialize SparseApplyFtrlV2."""
validator.check_value_type("lr", lr, [float], self.name)
validator.check_value_type("l1", l1, [float], self.name)
validator.check_value_type("l2", l2, [float], self.name)
validator.check_value_type("lr_power", lr_power, [float], self.name)
self.lr = validator.check_positive_float(lr, "lr", self.name)
self.l1 = validator.check_non_negative_float(l1, "l1", self.name)
self.l2 = validator.check_non_negative_float(l2, "l2", self.name)
self.lr_power = validator.check_number("lr_power", lr_power, 0, Rel.LE, self.name)
self.l2_shrinkage = validator.check_value_type("l2_shrinkage", l2_shrinkage, [float], self.name)
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
self.add_prim_attr('side_effect_mem', True)
def infer_shape(self, var_shape, accum_shape, linear_shape, grad_shape, indices_shape):
validator.check('var shape', var_shape, 'accum shape', accum_shape, Rel.EQ, self.name)
validator.check('var shape', var_shape, 'linear shape', linear_shape, Rel.EQ, self.name)
if len(var_shape) > 1:
validator.check('var_shape[1:]', var_shape[1:], 'grad_shape[1:]', grad_shape[1:], Rel.EQ, self.name)
validator.check_int(len(indices_shape), 1, Rel.EQ, "indices rank", self.name)
validator.check('grad_shape[0]', grad_shape[0], 'indices_shape[0]', indices_shape[0], Rel.EQ, self.name)
return var_shape, accum_shape, linear_shape
def infer_dtype(self, var_dtype, accum_dtype, linear_dtype, grad_dtype, indices_dtype):
args = {"var_dtype": var_dtype, "accum_dtype": accum_dtype,
"linear_dtype": linear_dtype, "grad_dtype": grad_dtype}
validator.check_tensors_dtypes_same_and_valid(args, [mstype.float16, mstype.float32], self.name)
validator.check_tensor_dtype_valid("indicese", indices_dtype, [mstype.int32], self.name)
return var_dtype, accum_dtype, linear_dtype
[docs]class Dropout(PrimitiveWithCheck):
"""
During training, randomly zeroes some of the elements of the input tensor
with probability 1-`keep_prob` from a Bernoulli distribution.
Args:
keep_prob (float): The keep rate, between 0 and 1, e.g. keep_prob = 0.9,
means dropping out 10% of input units. Default: 0.5.
Seed0 (int): Seed0 value for random generating. Default: 0.
Seed1 (int): Seed1 value for random generating. Default: 0.
Inputs:
- **x** (Tensor) - The input of Dropout, a Tensor of any shape with data type of float16 or float32.
Outputs:
- **output** (Tensor) - With the same shape and data type as `x`.
- **mask** (Tensor) - With the same shape as `x`.
Raises:
TypeError: If `keep_prob` is not a float.
TypeError: If `Seed0` or `Seed1` is not an int.
TypeError: If dtype of `x` is neither float16 nor float32.
TypeError: If `x` is not a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> dropout = ops.Dropout(keep_prob=0.5)
>>> x = Tensor(((20, 16), (50, 50)), mindspore.float32)
>>> output, mask = dropout(x)
>>> print(output.shape)
(2, 2)
"""
@prim_attr_register
def __init__(self, keep_prob=0.5, Seed0=0, Seed1=0):
"""Initialize Dropout."""
self.seed0 = validator.check_value_type("Seed0", Seed0, [int], self.name)
self.seed1 = validator.check_value_type("Seed1", Seed1, [int], self.name)
self.keep_prob = validator.check_float_range(keep_prob, 0, 1, Rel.INC_RIGHT, "keep_prob", self.name)
def check_shape(self, x_shape):
validator.check_int(len(x_shape), 1, Rel.GE, "x_shape", self.name)
def check_dtype(self, x_dtype):
valid_dtypes = (mstype.float16, mstype.float32)
validator.check_tensor_dtype_valid("x", x_dtype, valid_dtypes, self.name)
[docs]class Dropout2D(PrimitiveWithInfer):
r"""
During training, randomly zeroes some channels of the input tensor with probability 1-`keep_prob`
from a Bernoulli distribution(For a 4-dimensional tensor with a shape of NCHW, the channel feature map refers
to a 2-dimensional feature map with the shape of HW).
Dropout2D can improve the independence between channel feature maps.
Refer to :func:`mindspore.ops.dropout2d` for more detail.
Note:
The keep probability :math:`keep_prob` is equal to 'ops.dropout2d' input '1-p'.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> from mindspore.ops.operations.nn_ops import Dropout2D
>>> dropout = Dropout2D(keep_prob=0.5)
>>> x = Tensor(np.ones([2, 1, 2, 3]), mindspore.float32)
>>> output, mask = dropout(x)
>>> print(output.shape)
(2, 1, 2, 3)
"""
@prim_attr_register
def __init__(self, keep_prob=0.5):
"""Initialize Dropout2D."""
super().__init__("Dropout2D")
self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name)
self.keep_prob = validator.check_float_range(keep_prob, 0.0, 1.0, Rel.INC_BOTH, "keep_prob", self.name)
[docs]class Dropout3D(PrimitiveWithInfer):
r"""
During training, randomly zeroes some channels of the input tensor
with probability 1-`keep_prob` from a Bernoulli distribution(For a 5-dimensional tensor with a shape of NCDHW,
the channel feature map refers to a 3-dimensional feature map with a shape of DHW).
Dropout3D can improve the independence between channel feature maps.
Refer to :func:`mindspore.ops.dropout3d` for more detail.
Note:
The keep probability :math:`keep_prob` is equal to 'ops.dropout3d' input '1-p'.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> dropout = ops.Dropout3D(keep_prob=0.5)
>>> x = Tensor(np.ones([2, 1, 2, 1, 2]), mindspore.float32)
>>> output, mask = dropout(x)
>>> print(output.shape)
(2, 1, 2, 1, 2)
"""
@prim_attr_register
def __init__(self, keep_prob=0.5):
"""Initialize Dropout3D."""
super().__init__("Dropout3D")
self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name)
self.keep_prob = validator.check_float_range(keep_prob, 0.0, 1.0, Rel.INC_BOTH, "keep_prob", self.name)
[docs]class CTCLoss(Primitive):
r"""
Calculates the CTC (Connectionist Temporal Classification) loss and the gradient.
The bottom layer of this interface calls the implementation of the third-party baidu-research::warp-ctc.
The CTC algorithm is proposed in `Connectionist Temporal Classification: Labeling Unsegmented Sequence Data with
Recurrent Neural Networks <http://www.cs.toronto.edu/~graves/icml_2006.pdf>`_.
CTCLoss calculates loss between a continuous time series and a target sequence.
CTCLoss sums over the probability of input to target, producing a loss value which is differentiable with
respect to each input node. The alignment of input to target is assumed to be “many-to-one”,
such that the length of target series must be less than or equal to the length of input.
Args:
preprocess_collapse_repeated (bool): If true, repeated labels will be collapsed prior to the CTC calculation.
Default: False.
ctc_merge_repeated (bool): If false, during CTC calculation, repeated non-blank labels will not be merged
and these labels will be interpreted as individual ones. This is a simplified
version of CTC. Default: True.
ignore_longer_outputs_than_inputs (bool): If true, sequences with longer outputs than inputs will be ignored.
Default: False.
Inputs:
- **x** (Tensor) - The input Tensor must be a `3-D` tensor whose shape is
:math:`(max\_time, batch\_size, num\_classes)`. `num_classes` must be `num_labels + 1` classes, `num_labels`
indicates the number of actual labels. Blank labels are reserved. Default blank label is `num_classes - 1`.
Data type must be float16, float32 or float64.
- **labels_indices** (Tensor) - The indices of labels. `labels_indices[i, :] = [b, t]` means
`labels_values[i]` stores the id for `(batch b, time t)`. The type must be int64 and rank must be 2.
- **labels_values** (Tensor) - A `1-D` input tensor. The values are associated with the given batch and time.
The type must be int32. `labels_values[i]` must be in the range of `[0, num_classes)`.
- **sequence_length** (Tensor) - A tensor containing sequence lengths with the shape of :math:`(batch\_size, )`.
The type must be int32. Each value in the tensor must not be greater than `max_time`.
Outputs:
- **loss** (Tensor) - A tensor containing log-probabilities, the shape is :math:`(batch\_size, )`.
The tensor has the same data type as `x`.
- **gradient** (Tensor) - The gradient of `loss`, has the same shape and data type as `x`.
Raises:
TypeError: If `preprocess_collapse_repeated`, `ctc_merge_repeated` or `ignore_longer_outputs_than_inputs`
is not a bool.
TypeError: If `x`, `labels_indices`, `labels_values` or `sequence_length` is not a Tensor.
ValueError: If rank of `labels_indices` is not equal to 2.
TypeError: If dtype of `x` is not one of the following: float16, float32 nor float64.
TypeError: If dtype of `labels_indices` is not int64.
TypeError: If dtype of `labels_values` or `sequence_length` is not int32.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> x = Tensor(np.array([[[0.3, 0.6, 0.6],
... [0.4, 0.3, 0.9]],
...
... [[0.9, 0.4, 0.2],
... [0.9, 0.9, 0.1]]]).astype(np.float32))
>>> labels_indices = Tensor(np.array([[0, 0], [1, 0]]), mindspore.int64)
>>> labels_values = Tensor(np.array([2, 2]), mindspore.int32)
>>> sequence_length = Tensor(np.array([2, 2]), mindspore.int32)
>>> ctc_loss = ops.CTCLoss()
>>> loss, gradient = ctc_loss(x, labels_indices, labels_values, sequence_length)
>>> print(loss)
[ 0.79628 0.5995158 ]
>>> print(gradient)
[[[ 0.27029088 0.36485454 -0.6351454 ]
[ 0.28140804 0.25462854 -0.5360366 ]]
[[ 0.47548494 0.2883962 0.04510255 ]
[ 0.4082751 0.4082751 0.02843709 ]]]
"""
@prim_attr_register
def __init__(self, preprocess_collapse_repeated=False, ctc_merge_repeated=True,
ignore_longer_outputs_than_inputs=False):
"""Initialize CTCLoss."""
self.init_prim_io_names(inputs=["inputs", "labels_indices", "labels_values", "sequence_length"],
outputs=["loss", "gradient"])
validator.check_value_type("preprocess_collapse_repeated", preprocess_collapse_repeated, [bool], self.name)
self.preprocess_collapse_repeated_ = preprocess_collapse_repeated
self.ctc_merge_repeated_ = validator.check_value_type("ctc_merge_repeated", ctc_merge_repeated,
[bool], self.name)
validator.check_value_type("ignore_longer_outputs_than_inputs",
ignore_longer_outputs_than_inputs, [bool], self.name)
self.ignore_longer_outputs_than_inputs_ = ignore_longer_outputs_than_inputs
[docs]class CTCGreedyDecoder(Primitive):
r"""
Performs greedy decoding on the logits given in inputs.
Refer to :func:`mindspore.ops.ctc_greedy_decoder` for more detail.
Supported Platforms:
``Ascend`` ``CPU``
"""
@prim_attr_register
def __init__(self, merge_repeated=True):
"""Initialize CTCGreedyDecoder."""
self.merge_repeated = validator.check_value_type("merge_repeated", merge_repeated, [bool], self.name)
[docs]class BasicLSTMCell(PrimitiveWithInfer):
"""
It's similar to operator :class:`mindspore.ops.DynamicRNN`. BasicLSTMCell will be deprecated in the future.
Please use DynamicRNN instead.
Supported Platforms:
Deprecated
"""
@prim_attr_register
def __init__(self, keep_prob=1.0, forget_bias=1.0, state_is_tuple=True, activation='tanh'):
"""Initialize BasicLSTMCell."""
self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name)
self.keep_prob = validator.check_float_range(keep_prob, 0.0, 1.0, Rel.INC_BOTH, "keep_prob", self.name)
self.forget_bias = validator.check_value_type("forget_bias", forget_bias, [float], self.name)
self.state_is_tuple = validator.check_value_type("state_is_tuple", state_is_tuple, [bool], self.name)
self.activation = validator.check_string(activation, ['tanh'], "activation", self.name)
def infer_shape(self, x_shape, h_shape, c_shape, w_shape, b_shape):
validator.check_int(len(x_shape), 2, Rel.EQ, "x rank", self.name)
validator.check_int(len(h_shape), 2, Rel.EQ, "h rank", self.name)
validator.check_int(len(c_shape), 2, Rel.EQ, "c rank", self.name)
validator.check_int(len(w_shape), 2, Rel.EQ, "w rank", self.name)
validator.check_int(len(b_shape), 1, Rel.EQ, "b rank", self.name)
validator.check("x_shape[0]", x_shape[0], "h_shape[0]", h_shape[0], Rel.EQ, self.name)
validator.check("c_shape[0]", c_shape[0], "h_shape[0]", h_shape[0], Rel.EQ, self.name)
validator.check("c_shape[1]", c_shape[1], "h_shape[1]", h_shape[1], Rel.EQ, self.name)
validator.check("w_shape[1]", w_shape[1], "4*h_shape[1]", 4 * h_shape[1], Rel.EQ, self.name)
validator.check("w_shape[0]", w_shape[0], "x_shape[1]+h_shape[1]", x_shape[1] + h_shape[1], Rel.EQ, self.name)
validator.check("b_shape[0]", b_shape[0], "4*h_shape[1]", 4 * h_shape[1], Rel.EQ, self.name)
ct_shape = c_shape
ht_shape = c_shape
it_shape = c_shape
jt_shape = c_shape
ft_shape = c_shape
ot_shape = c_shape
tanhct_shape = c_shape
return ct_shape, ht_shape, it_shape, jt_shape, ft_shape, ot_shape, tanhct_shape
def infer_dtype(self, x_dtype, h_dtype, c_dtype, w_dtype, b_dtype):
tuple(map(partial(validator.check_tensor_dtype_valid,
valid_dtypes=(mstype.float16, mstype.float32), prim_name=self.name),
("x_dtype", "h_dtype", "w_dtype"),
(x_dtype, h_dtype, w_dtype)))
args = {"c_dtype": c_dtype, "b_dtype": b_dtype}
validator.check_tensors_dtypes_same_and_valid(args, [mstype.float16, mstype.float32], self.name)
return c_dtype, mstype.float16, c_dtype, c_dtype, c_dtype, c_dtype, c_dtype
[docs]class DynamicRNN(PrimitiveWithInfer):
r"""
Applies a recurrent neural network to the input.
Only long short-term memory (LSTM) is supported currently.
.. math::
\begin{array}{ll} \\
i_{t+1} = \sigma(W_{ix} x_{t+1} + b_{ix} + W_{ih} h_{(t)} + b_{ih}) \\
f_{t+1} = \sigma(W_{fx} x_{t+1} + b_{fx} + W_{fh} h_{(t)} + b_{fh}) \\
\tilde{c}_{t+1} = \tanh(W_{cx} x_{t+1} + b_{cx} + W_{ch} h_{(t)} + b_{ch}) \\
o_{t+1} = \sigma(W_{ox} x_{t+1} + b_{ox} + W_{oh} h_{(t)} + b_{oh}) \\
c_{t+1} = f_{t+1} * c_{(t)} + i_t * \tilde{c}_{t+1} \\
h_{t+1} = o_{t+1} * \tanh(c_{t+1}) \\
\end{array}
where :math:`h_{t+1}` is the hidden state at time `t+1`, :math:`x_{t+1}` is the input
at time `t+1`, :math:`h_{t}` is the hidden state of the layer
at time `t` or the initial hidden state at time `0`,
:math:`\sigma` is the sigmoid function, and :math:`*` is the Hadamard product. :math:`W, b`
are learnable weights between the output and the input in the formula. For instance,
:math:`W_{ix}, b_{ix}` are the weight and bias used to transform from input :math:`x` to :math:`i`.
Args:
cell_type (str): A string identifying the cell type in the operator. Default: 'LSTM'.
Only 'LSTM' is currently supported.
direction (str): A string identifying the direction in the operator. Default: 'UNIDIRECTIONAL'.
Only 'UNIDIRECTIONAL' is currently supported.
cell_depth (int): An integer identifying the cell depth in the operator. Default: 1.
use_peephole (bool): A bool identifying if use peephole in the operator. Default: False.
keep_prob (float): A float identifying the keep prob in the operator. Default: 1.0.
cell_clip (float): A float identifying the cell clip in the operator. Default: -1.0.
num_proj (int): An integer identifying the number projection in the operator. Default: 0.
time_major (bool): A bool identifying the time major in the operator. Default: True.
Only `True` is currently supported.
activation (str): A string identifying the type of activation function in the operator. Default: 'tanh'.
Only 'tanh' is currently supported.
forget_bias (float): A float identifying the forget bias in the operator. Default: 0.0.
is_training (bool): A bool identifying is training in the operator. Default: True.
Inputs:
- **x** (Tensor) - Current words. Tensor of shape :math:`(num\_step, batch\_size, input\_size)`.
The data type must be float16.
- **w** (Tensor) - Weight. Tensor of shape :math:`(input\_size + hidden\_size, 4 * hidden\_size)`.
The data type must be float16.
- **b** (Tensor) - Bias. Tensor of shape :math:`(4 * hidden\_size)`.
The data type must be float16 or float32.
- **seq_length** (Tensor) - The length of each batch. Tensor of shape :math:`(batch\_size, )`.
Only `None` is currently supported.
- **init_h** (Tensor) - Hidden state of initial time. Tensor of shape :math:`(1, batch\_size, hidden\_size)`.
The data type must be float16.
- **init_c** (Tensor) - Cell state of initial time. Tensor of shape :math:`(1, batch\_size, hidden\_size)`.
The data type must be float16.
Outputs:
- **y** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`.
Has the same type with input `b`.
- **output_h** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`.
With data type of float16.
- **output_c** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`.
Has the same type with input `b`.
- **i** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`.
Has the same type with input `b`.
- **j** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`.
Has the same type with input `b`.
- **f** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`.
Has the same type with input `b`.
- **o** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`.
Has the same type with input `b`.
- **tanhct** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`.
Has the same type with input `b`.
Raises:
TypeError: If `cell_type`, `direction` or `activation` is not a str.
TypeError: If `cell_depth` or `num_proj` is not an int.
TypeError: If `keep_prob`, `cell_clip` or `forget_bias` is not a float.
TypeError: If `use_peehpole`, `time_major` or `is_training` is not a bool.
TypeError: If `x`, `w`, `b`, `seq_length`, `init_h` or `init_c` is not a Tensor.
TypeError: If dtype of `x`, `w`, `init_h` or `init_c` is not float16.
TypeError: If dtype of `b` is neither float16 nor float32.
Supported Platforms:
``Ascend``
Examples:
>>> x = Tensor(np.random.rand(2, 16, 64).astype(np.float16))
>>> w = Tensor(np.random.rand(96, 128).astype(np.float16))
>>> b = Tensor(np.random.rand(128).astype(np.float16))
>>> init_h = Tensor(np.random.rand(1, 16, 32).astype(np.float16))
>>> init_c = Tensor(np.random.rand(1, 16, 32).astype(np.float16))
>>> dynamic_rnn = ops.DynamicRNN()
>>> output = dynamic_rnn(x, w, b, None, init_h, init_c)
>>> print(output[0].shape)
(2, 16, 32)
"""
@prim_attr_register
def __init__(self,
cell_type='LSTM',
direction='UNIDIRECTIONAL',
cell_depth=1,
use_peephole=False,
keep_prob=1.0,
cell_clip=-1.0,
num_proj=0,
time_major=True,
activation='tanh',
forget_bias=0.0,
is_training=True):
"""Initialize DynamicRNN."""
self.forget_bias = validator.check_value_type("forget_bias", forget_bias, [float], self.name)
self.cell_depth = validator.check_value_type("cell_depth", cell_depth, [int], self.name)
self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name)
self.cell_clip = validator.check_value_type("cell_clip", cell_clip, [float], self.name)
self.num_proj = validator.check_non_negative_int(num_proj, "num_proj", self.name)
self.forget_bias = validator.check_value_type("forget_bias", forget_bias, [float], self.name)
self.use_peephole = validator.check_value_type("use_peephole", use_peephole, [bool], self.name)
self.time_major = validator.check_value_type("time_major", time_major, [bool], self.name)
self.is_training = validator.check_value_type("is_training", is_training, [bool], self.name)
validator.check_value_type("cell_type", cell_type, [str], self.name)
self.cell_type = validator.check_string(cell_type, ['LSTM'], "cell_type", self.name)
validator.check_value_type("direction", direction, [str], self.name)
self.direction = validator.check_string(direction, ['UNIDIRECTIONAL'], "direction", self.name)
validator.check_value_type("activation", activation, [str], self.name)
self.activation = validator.check_string(activation, ['tanh'], "activation", self.name)
def infer_shape(self, x_shape, w_shape, b_shape, seq_shape, h_shape, c_shape):
validator.check_int(len(x_shape), 3, Rel.EQ, "x_shape", self.name)
validator.check_int(len(w_shape), 2, Rel.EQ, "w rank", self.name)
validator.check_int(len(b_shape), 1, Rel.EQ, "b rank", self.name)
validator.check_int(len(h_shape), 3, Rel.EQ, "h_shape", self.name)
validator.check_int(len(c_shape), 3, Rel.EQ, "c_shape", self.name)
if seq_shape is not None:
raise ValueError(f"For '{self.name}', the 'seq_length' must be None.")
num_step, batch_size, input_size = x_shape
hidden_size = w_shape[-1] // 4
validator.check("b_shape[-1]", b_shape[-1], "w_shape[-1]", w_shape[-1], Rel.EQ, self.name)
if w_shape[-1] % 4 != 0:
raise ValueError(f"For '{self.name}', the last dimension of 'w' must be a multiple of 4, "
f"but got {w_shape[-1]}.")
validator.check("w_shape[0]", w_shape[0], "input_size + hidden_size",
input_size + hidden_size, Rel.EQ, self.name)
validator.check("b_shape[0]", b_shape[0], "w_shape[1]", w_shape[1], Rel.EQ, self.name)
validator.check_int(h_shape[0], 1, Rel.EQ, "h_shape[0]", self.name)
validator.check("h_shape[1]", h_shape[1], "batch_size", batch_size, Rel.EQ, self.name)
validator.check("h_shape[2]", h_shape[2], "hidden_size", hidden_size, Rel.EQ, self.name)
validator.check("c_shape", c_shape, "h_shape", h_shape, Rel.EQ, self.name)
self.placeholder_index = [3]
self.add_prim_attr("placeholder_index", self.placeholder_index)
self.add_prim_attr("input_size", input_size)
self.add_prim_attr("hidden_size", hidden_size)
y_shape = (num_step, batch_size, hidden_size)
return y_shape, y_shape, y_shape, y_shape, y_shape, y_shape, y_shape, y_shape
def infer_dtype(self, x_dtype, w_dtype, b_dtype, seq_dtype, h_dtype, c_dtype):
tuple(map(partial(validator.check_tensor_dtype_valid, valid_dtypes=[mstype.float16], prim_name=self.name),
("x", "w", "h", "c"),
(x_dtype, w_dtype, h_dtype, c_dtype)))
validator.check_tensor_dtype_valid("b", b_dtype, (mstype.float16, mstype.float32), self.name)
return b_dtype, x_dtype, b_dtype, b_dtype, b_dtype, b_dtype, b_dtype, b_dtype
[docs]class DynamicGRUV2(PrimitiveWithInfer):
r"""
Applies a single-layer gated recurrent unit (GRU) to an input sequence.
.. math::
\begin{array}{ll}
r_{t+1} = \sigma(W_{ir} x_{t+1} + b_{ir} + W_{hr} h_{(t)} + b_{hr}) \\
z_{t+1} = \sigma(W_{iz} x_{t+1} + b_{iz} + W_{hz} h_{(t)} + b_{hz}) \\
n_{t+1} = \tanh(W_{in} x_{t+1} + b_{in} + r_{t+1} * (W_{hn} h_{(t)}+ b_{hn})) \\
h_{t+1} = (1 - z_{t+1}) * n_{t+1} + z_{t+1} * h_{(t)}
\end{array}
where :math:`h_{t+1}` is the hidden state at time `t+1`, :math:`x_{t+1}` is the input
at time `t+1`, :math:`h_{t}` is the hidden state of the layer
at time `t` or the initial hidden state at time `0`, and :math:`r_{t+1}`,
:math:`z_{t+1}`, :math:`n_{t+1}` are the reset, update, and new gates, respectively.
:math:`W`, :math:`b` are the weight parameter and the deviation parameter respectively.
:math:`\sigma` is the sigmoid function, and :math:`*` is the Hadamard product.
Args:
direction (str): A string identifying the direction in the operator. Default: 'UNIDIRECTIONAL'.
Only 'UNIDIRECTIONAL' is currently supported.
cell_depth (int): An integer identifying the cell depth in the operator. Default: 1.
keep_prob (float): A float identifying the keep prob in the operator. Default: 1.0.
cell_clip (float): A float identifying the cell clip in the operator. Default: -1.0.
num_proj (int): An integer identifying the number projection in the operator. Default: 0.
time_major (bool): A bool identifying the time major in the operator. Default: True.
activation (str) : A string identifying the type of activation function in the operator. Default: 'tanh'.
Only 'tanh' is currently supported.
gate_order (str): A string identifying the gate order in weight and bias. Default: 'rzh'.
'zrh' is another option. Here, 'rzh' means the gate order is: reset gate, update gate, hidden gate.
'zrh' means the gate order is: update gate, reset gate, hidden gate.
reset_after (bool): A bool identifying whether to apply reset gate after matrix multiplication. Default: True.
is_training (bool): A bool identifying is training in the operator. Default: True.
Inputs:
- **x** (Tensor) - Current words.
Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{input_size})`.
The data type must be float16.
- **weight_input** (Tensor) - Input-hidden weight :math:`W_{\{ir,iz,in\}}`.
Tensor of shape :math:`(\text{input_size}, 3 \times \text{hidden_size})`.
The data type must be float16.
- **weight_hidden** (Tensor) - Hidden-hidden weight :math:`W_{\{hr,hz,hn\}}`.
Tensor of shape :math:`(\text{hidden_size}, 3 \times \text{hidden_size})`.
The data type must be float16.
- **bias_input** (Tensor) - Input-hidden bias :math:`b_{\{ir,iz,in\}}`.
Tensor of shape :math:`(3 \times \text{hidden_size})`, or None.
Has the same data type with input `init_h`.
- **bias_hidden** (Tensor) - Hidden-hidden bias :math:`b_{\{hr,hz,hn\}}`.
Tensor of shape :math:`(3 \times \text{hidden_size})`,
or None. Has the same data type with input `init_h`.
- **seq_length** (Tensor) - The length of each batch. Tensor of shape :math:`(\text{batch_size})`.
Only `None` is currently supported.
- **init_h** (Tensor) - Hidden state of initial time.
Tensor of shape :math:`(\text{batch_size}, \text{hidden_size})`.
The data type must be float16 or float32.
Outputs:
- **y** (Tensor) - A Tensor of shape:
- y_shape = :math:`(num\_step, batch\_size, min(hidden\_size, num\_proj))`: `If num_proj > 0`,
- y_shape = :math:`(num\_step, batch\_size, hidden\_size)`: `If num_proj = 0`.
Has the same data type with input `bias_type`.
- **output_h** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`.
Has the same data type with input `bias_type`.
- **update** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`.
Has the same data type with input `bias_type`.
- **reset** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`.
Has the same data type with input `bias_type`.
- **new** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`.
Has the same data type with input `bias_type`.
- **hidden_new** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`.
Has the same data type with input `bias_type`.
A note about the bias_type:
- If `bias_input` and `bias_hidden` both are `None`, `bias_type` is the data type of `init_h`.
- If `bias_input` is not `None`, `bias_type` is the data type of `bias_input`.
- If `bias_input` is `None` and `bias_hidden` is not `None`, `bias_type` is the data type of `bias_hidden`.
Raises:
TypeError: If `direction`, `activation` or `gate_order` is not a str.
TypeError: If `cell_depth` or `num_proj` is not an int.
TypeError: If `keep_prob` or `cell_clip` is not a float.
TypeError: If `time_major`, `reset_after` or `is_training` is not a bool.
TypeError: If `x`, `weight_input`, `weight_hidden`, `bias_input`, `bias_hidden`, `seq_length` or `ini_h` is not
a Tensor.
TypeError: If dtype of `x`, `weight_input` or `weight_hidden` is not float16.
TypeError: If dtype of `init_h` is neither float16 nor float32.
Supported Platforms:
``Ascend``
Examples:
>>> x = Tensor(np.random.rand(2, 8, 64).astype(np.float16))
>>> weight_i = Tensor(np.random.rand(64, 48).astype(np.float16))
>>> weight_h = Tensor(np.random.rand(16, 48).astype(np.float16))
>>> bias_i = Tensor(np.random.rand(48).astype(np.float16))
>>> bias_h = Tensor(np.random.rand(48).astype(np.float16))
>>> init_h = Tensor(np.random.rand(8, 16).astype(np.float16))
>>> dynamic_gru_v2 = ops.DynamicGRUV2()
>>> output = dynamic_gru_v2(x, weight_i, weight_h, bias_i, bias_h, None, init_h)
>>> print(output[0].shape)
(2, 8, 16)
"""
@prim_attr_register
def __init__(self,
direction='UNIDIRECTIONAL',
cell_depth=1,
keep_prob=1.0,
cell_clip=-1.0,
num_proj=0,
time_major=True,
activation="tanh",
gate_order="rzh",
reset_after=True,
is_training=True):
"""Initialize DynamicGRUV2."""
self.cell_depth = validator.check_value_type("cell_depth", cell_depth, [int], self.name)
self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name)
self.cell_clip = validator.check_value_type("cell_clip", cell_clip, [float], self.name)
self.num_proj = validator.check_non_negative_int(num_proj, "num_proj", self.name)
self.time_major = validator.check_value_type("time_major", time_major, [bool], self.name)
self.is_training = validator.check_value_type("is_training", is_training, [bool], self.name)
self.direction = validator.check_string(direction, ['UNIDIRECTIONAL'], "direction", self.name)
self.activation = validator.check_string(activation, ['tanh'], "activation", self.name)
self.gate_order = validator.check_string(gate_order, ['zrh', 'rzh'], "gate_order", self.name)
self.reset_after = validator.check_value_type("reset_after", reset_after, [bool], self.name)
def infer_shape(self, x_shape, winput_shape, whidden_shape, binput_shape, bhidden_shape, seq_shape, h_shape):
validator.check_int(len(x_shape), 3, Rel.EQ, "x shape", self.name)
validator.check_int(len(winput_shape), 2, Rel.EQ, "weight input shape rank", self.name)
validator.check_int(len(whidden_shape), 2, Rel.EQ, "weight hidden shape rank", self.name)
num_step, batch_size, input_size = x_shape
hidden_size = winput_shape[-1] // 3
if winput_shape[-1] % 3 != 0:
raise ValueError(f"For '{self.name}', the last dimension of 'w' must be a multiple of 3, "
f"but got {winput_shape[-1]}.")
self.placeholder_index = [3, 4, 5]
if binput_shape is not None:
validator.check_int(len(binput_shape), 1, Rel.EQ, "bias input shape rank", self.name)
validator.check("bias_input_shape", binput_shape, "3 * hidden_shape", [3 * hidden_size], Rel.EQ, self.name)
self.placeholder_index.remove(3)
if bhidden_shape is not None:
validator.check_int(len(bhidden_shape), 1, Rel.EQ, "bias hidden shape rank", self.name)
validator.check("bias_hidden_shape", bhidden_shape,
"3 * hidden_shape", [3 * hidden_size], Rel.EQ, self.name)
self.placeholder_index.remove(4)
if seq_shape is not None:
raise ValueError(f"For '{self.name}', the dimension of 'seq_length' must be None, "
f"but got {seq_shape}.")
validator.check_int(len(h_shape), 2, Rel.EQ, "init_h shape rank", self.name)
validator.check("init_h_shape[0]", h_shape[0], "batch_size", batch_size, Rel.EQ, self.name)
validator.check("init_h_shape[1]", h_shape[1], "hidden_size", hidden_size, Rel.EQ, self.name)
validator.check("weight_input_shape[-1]", winput_shape[-1], "weight_hidden_shape[-1]",
whidden_shape[-1], Rel.EQ, self.name)
validator.check("weight_input_shape[0]", winput_shape[0], "input_size", input_size, Rel.EQ, self.name)
validator.check("weight_hidden_shape[0]", whidden_shape[0], "hidden_size", hidden_size, Rel.EQ, self.name)
if self.num_proj > 0:
y_shape = (num_step, batch_size, min(hidden_size, self.num_proj))
else:
y_shape = (num_step, batch_size, hidden_size)
out_shape = (num_step, batch_size, hidden_size)
self.add_prim_attr("placeholder_index", self.placeholder_index)
return y_shape, out_shape, out_shape, out_shape, out_shape, out_shape
def infer_dtype(self, x_dtype, winput_dtype, whidden_dtype, binput_dtype, bhidden_dtype, seq_dtype, h_dtype):
validator.check_tensor_dtype_valid("x dtype", x_dtype, [mstype.float16], self.name)
validator.check_tensor_dtype_valid("weight input dtype", winput_dtype, [mstype.float16], self.name)
validator.check_tensor_dtype_valid("weight hidden dtype", whidden_dtype, [mstype.float16], self.name)
valid_dtypes = [mstype.float16, mstype.float32]
validator.check_tensor_dtype_valid("init_h dtype", h_dtype, valid_dtypes, self.name)
b_dtype = h_dtype
if binput_dtype is not None:
args = {'init_h': h_dtype, 'bias_input': binput_dtype}
validator.check_tensors_dtypes_same_and_valid(args, valid_dtypes, self.name)
b_dtype = binput_dtype
if bhidden_dtype is not None:
args = {'init_h': h_dtype, 'bias_hidden': bhidden_dtype}
validator.check_tensors_dtypes_same_and_valid(args, valid_dtypes, self.name)
b_dtype = bhidden_dtype
return b_dtype, b_dtype, b_dtype, b_dtype, b_dtype, b_dtype
[docs]class InTopK(Primitive):
r"""
Determines whether the targets are in the top `k` predictions.
Refer to :func:`mindspore.ops.intopk` for more detail.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> x1 = Tensor(np.array([[1, 8, 5, 2, 7], [4, 9, 1, 3, 5]]), mindspore.float32)
>>> x2 = Tensor(np.array([1, 3]), mindspore.int32)
>>> in_top_k = ops.InTopK(3)
>>> output = in_top_k(x1, x2)
>>> print(output)
[ True False]
"""
@prim_attr_register
def __init__(self, k):
"""Initialize InTopK"""
self.init_prim_io_names(inputs=['x1', 'x2', 'k'], outputs=['y'])
validator.check_value_type("k", k, [int], self.name)
[docs]class LRN(PrimitiveWithInfer):
r"""
Local Response Normalization.
.. math::
b_{c} = a_{c}\left(k + \frac{\alpha}{n}
\sum_{c'=\max(0, c-n/2)}^{\min(N-1,c+n/2)}a_{c'}^2\right)^{-\beta}
where the :math:`a_{c}` indicates the specific value of the pixel corresponding to c in feature map;
where the :math:`n/2` indicates the `depth_radius`; where the :math:`k` indicates the `bias`;
where the :math:`\alpha` indicates the `alpha`; where the :math:`\beta` indicates the `beta`.
Args:
depth_radius (int): Half-width of the 1-D normalization window with the shape of 0-D. Default: 5.
bias (float): An offset (usually positive to avoid dividing by 0). Default: 1.0.
alpha (float): A scale factor, usually positive. Default: 1.0.
beta (float): An exponent. Default: 0.5.
norm_region (str): Specifies normalization region. Options: "ACROSS_CHANNELS". Default: "ACROSS_CHANNELS".
Inputs:
- **x** (Tensor) - A 4-D Tensor with float16 or float32 data type.
Outputs:
Tensor, with the same shape and data type as `x`.
Raises:
TypeError: If `depth_radius` is not an int.
TypeError: If `bias`, `alpha` or `beta` is not a float.
TypeError: If `norm_region` is not a str.
TypeError: If `x` is not a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> x = Tensor(np.array([[[[0.1], [0.2]],
... [[0.3], [0.4]]]]), mindspore.float32)
>>> lrn = ops.LRN()
>>> output = lrn(x)
>>> print(output)
[[[[0.09534626]
[0.1825742 ]]
[[0.2860388 ]
[0.3651484 ]]]]
"""
@prim_attr_register
def __init__(self, depth_radius=5, bias=1.0, alpha=1.0, beta=0.5, norm_region="ACROSS_CHANNELS"):
"""Initialize LRN"""
super().__init__("LRN")
self.init_prim_io_names(inputs=['x'], outputs=['y'])
validator.check_value_type("depth_radius", depth_radius, [int], self.name)
validator.check_value_type("bias", bias, [float], self.name)
validator.check_value_type("alpha", alpha, [float], self.name)
validator.check_value_type("beta", beta, [float], self.name)
validator.check_value_type("norm_region", norm_region, [str], self.name)
validator.check_string(norm_region, ['ACROSS_CHANNELS'], 'norm_region', self.name)
validator.check_non_negative_int(depth_radius, "depth_radius", self.name)
[docs]class AvgPool3D(Primitive):
r"""
3D Average pooling operation.
Applies a 3D average pooling over an input Tensor which can be regarded as a composition of 3D input planes.
Typically the input is of shape :math:`(N, C, D_{in}, H_{in}, W_{in})`, AvgPool3D outputs
regional average in the :math:`(D_{in}, H_{in}, W_{in})`-dimension. Given kernel size
:math:`ks = (d_{ker}, h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1, s_2)`, the operation is as follows.
.. warning::
"kernel_size" is in the range [1, 255]. "strides" is in the range [1, 63].
.. math::
\text{output}(N_i, C_j, d, h, w) =
\frac{1}{d_{ker} * h_{ker} * w_{ker}} \sum_{l=0}^{d_{ker}-1} \sum_{m=0}^{h_{ker}-1} \sum_{n=0}^{w_{ker}-1}
\text{input}(N_i, C_j, s_0 \times d + l, s_1 \times h + m, s_2 \times w + n)
Args:
kernel_size (Union[int, tuple[int]]): The size of kernel used to take the average value,
is an int number that represents depth, height and width are both kernel_size, or a tuple
of three int numbers that represent depth, height and width respectively. Default: 1.
strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
the depth, height and width of movement are both strides, or a tuple of three int numbers that
represent depth, height and width of movement respectively. Default: 1.
pad_mode (str): The optional value for pad mode, is "same", "valid", "pad".
Default: "valid".
- same: Adopts the way of completion. The depth, height and width of the output will be the same as
the input. The total number of padding will be calculated in depth, horizontal and vertical
directions and evenly distributed to head and tail, top and bottom, left and right if possible.
Otherwise, the last extra padding will be done from the tail, bottom and the right side.
If this mode is set, `pad` must be 0.
- valid: Adopts the way of discarding. The possible largest depth, height and width of output
will be returned without padding. Extra pixels will be discarded. If this mode is set, `pad`
must be 0.
- pad: Implicit paddings on both sides of the input in depth, height, width. The number of `pad` will
be padded to the input Tensor borders. `pad` must be greater than or equal to 0.
pad (Union(int, tuple[int])): The pad value to be filled. Default: 0. If `pad` is an integer, the paddings of
head, tail, top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of six
integers, the padding of head, tail, top, bottom, left and right equal to pad[0], pad[1], pad[2],
pad[3], pad[4] and pad[5] correspondingly.
ceil_mode (bool): If True, ceil instead of floor to compute the output shape. Default: False.
count_include_pad (bool): If True, averaging calculation will include the zero-padding. Default: True.
divisor_override (int): If specified, it will be used as divisor in the averaging calculation,
otherwise kernel_size will be used. Default: 0.
data_format (str) : The optional value for data format. Currently only support 'NCDHW'. Default: 'NCDHW'.
Inputs:
- **x** (Tensor) - Tensor of shape :math:`(N, C, D_{in}, H_{in}, W_{in})`.
Currently support float16 and float32 data type.
Outputs:
Tensor, with shape :math:`(N, C, D_{out}, H_{out}, W_{out})`. Has the same data type with `x`.
Raises:
TypeError: If `kernel_size`, `strides` or `pad` is neither an int not a tuple.
TypeError: If `ceil_mode` or `count_include_pad` is not a bool.
TypeError: If `pad_mode` or `data_format` is not a string.
TypeError: If `divisor_override` is not an int.
ValueError: If numbers in `kernel_size` or `strides` are not positive.
ValueError: If `kernel_size` or `strides` is a tuple whose length is not equal to 3.
ValueError: If `pad_mode` is not one of 'same', 'valid' or 'pad'.
ValueError: If `pad` is a tuple whose length is not equal to 6.
ValueError: If element of `pad` is less than 0.
ValueError: If `pad_mode` is not equal to 'pad' and `pad` is not equal to 0 or (0, 0, 0, 0, 0, 0).
ValueError: If `data_format` is not 'NCDHW'.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> x = Tensor(np.arange(1 * 2 * 2 * 2 * 3).reshape((1, 2, 2, 2, 3)), mindspore.float16)
>>> avg_pool3d = ops.AvgPool3D(kernel_size=2, strides=1, pad_mode="valid")
>>> output = avg_pool3d(x)
>>> print(output)
[[[[[ 5. 6.]]]
[[[17. 18.]]]]]
"""
@prim_attr_register
def __init__(self, kernel_size=1, strides=1, pad_mode="valid", pad=0, ceil_mode=False,
count_include_pad=True, divisor_override=0, data_format="NCDHW"):
"""Initialize AvgPool3D"""
self.init_prim_io_names(inputs=['input'], outputs=['output'])
self.kernel_size = _check_3d_int_or_tuple('kernel_size', kernel_size, self.name, ret_five=True)
self.add_prim_attr('kernel_size', self.kernel_size)
self.strides = _check_3d_int_or_tuple('strides', strides, self.name, ret_five=True)
self.add_prim_attr('strides', self.strides)
validator.check_value_type('pad', pad, (int, tuple), self.name)
if isinstance(pad, int):
pad = (pad,) * 6
if len(pad) != 6:
raise ValueError(f"For '{self.name}', attr 'pad' must be an positive int number or a tuple of "
f"six positive int numbers, but got {self.pad}.")
self.pad_list = pad
self.add_prim_attr('pad_list', self.pad_list)
validator.check_value_type('pad_mode', pad_mode, [str], self.name)
self.pad_mode = validator.check_string(pad_mode.upper(), ['VALID', 'SAME', 'PAD'], 'pad_mode', self.name)
self.add_prim_attr('pad_mode', self.pad_mode)
if self.pad_mode != 'PAD' and pad != (0, 0, 0, 0, 0, 0):
raise ValueError(f"For '{self.name}', the 'pad' must be zero or (0, 0, 0, 0, 0, 0) when 'pad_mode' "
f"is not \"PAD\", but got 'pad' is {self.pad} and 'pad_mode' is {pad_mode}.")
if self.pad_mode == 'PAD':
for item in pad:
validator.check_non_negative_int(item, 'pad or item of pad', self.name)
self.ceil_mode = validator.check_value_type('ceil_mode', ceil_mode, bool, self.name)
self.count_include_pad = validator.check_value_type('count_include_pad', count_include_pad, bool, self.name)
self.divisor_override = validator.check_non_negative_int(divisor_override, 'divisor_override', self.name)
self.format = validator.check_string(data_format, ['NCDHW'], 'format', self.name)
[docs]class Conv3D(PrimitiveWithInfer):
r"""
3D convolution layer.
Applies a 3D convolution over an input tensor which is typically of shape
:math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` and output shape
:math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`. Where :math:`N` is batch size, :math:`C` is channel number,
:math:`D` is depth, :math:`H` is height, :math:`W` is width.
the formula is defined as:
.. math::
\operatorname{out}\left(N_{i}, C_{\text {out}_j}\right)=\operatorname{bias}\left(C_{\text {out}_j}\right)+
\sum_{k=0}^{C_{in}-1} ccor(\text {weight}\left(C_{\text {out}_j}, k\right),
\operatorname{input}\left(N_{i}, k\right))
where :math:`k` is kernel, :math:`ccor` is the cross-correlation operator.
If the 'pad_mode' is set to be "valid", the output depth, height and width will be
:math:`\left \lfloor{1 + \frac{D_{in} + 2 \times \text{padding} - \text{ks_d} -
(\text{ks_d} - 1) \times (\text{dilation} - 1) }{\text{stride}}} \right \rfloor` and
:math:`\left \lfloor{1 + \frac{H_{in} + 2 \times \text{padding} - \text{ks_h} -
(\text{ks_h} - 1) \times (\text{dilation} - 1) }{\text{stride}}} \right \rfloor` and
:math:`\left \lfloor{1 + \frac{W_{in} + 2 \times \text{padding} - \text{ks_w} -
(\text{ks_w} - 1) \times (\text{dilation} - 1) }{\text{stride}}} \right \rfloor` respectively. Where
:math:`dilation` is Spacing between kernel elements, :math:`stride` is The step length of each step,
:math:`padding` is zero-padding added to both sides of the input.
Args:
out_channel (int): The number of output channel :math:`C_{out}`.
kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers. Specifies the depth, height
and width of the 3D convolution window. Single int means the value is for the depth, height and width
of the kernel. A tuple of 3 ints means the first value is for the depth, height and the other is for the
width of the kernel.
mode (int): Modes for different convolutions. It is currently not used. Default: 1.
stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
the depth, height and width of movement are both strides, or a tuple of three int numbers that
represent depth, height and width of movement respectively. Default: 1.
pad_mode (str): Specifies padding mode. The optional values are
"same", "valid" and "pad". Default: "valid".
- same: Adopts the way of completion. The depth, height and width of the output will be equal to
the input `x` divided by stride. The padding will be evenly calculated in head and tail, top and bottom,
left and right directions possiblily.
Otherwise, the last extra padding will be calculated from the tail, bottom and the right side.
If this mode is set, `pad` must be 0.
- valid: Adopts the way of discarding. The possible largest depth, height and width of output
will be returned without padding. Extra pixels will be discarded. If this mode is set, `pad`
must be 0.
- pad: Implicit paddings on both sides of the input in depth, height and width. The number of `pad` will
be padded to the input Tensor borders. `pad` must be greater than or equal to 0.
pad (Union(int, tuple[int])): The pad value to be filled. Default: 0. If `pad` is an integer, the paddings of
head, tail, top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of six
integers, the padding of head, tail, top, bottom, left and right equal to pad[0], pad[1], pad[2],
pad[3], pad[4] and pad[5] correspondingly.
dilation (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers
:math:`(dilation_d, dilation_h, dilation_w)`.
Currently, dilation on depth only supports the case of 1.
Specifies the dilation rate to use for dilated convolution.
If set :math:`k > 1`, there will be :math:`k - 1` pixels skipped
for each sampling location. Its value must be greater than or equal to 1 and
bounded by the height and width of the input. Default: 1.
group (int): Splits filter into groups, `in_channels` and `out_channels` must be
divisible by the number of groups. Default: 1. Only 1 is currently supported.
data_format (str): The optional value for data format. Currently only support "NCDHW".
Inputs:
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`.
Currently input data type only support float16 and float32.
- **weight** (Tensor) - Set size of kernel is :math:`(k_d, K_h, K_w)`, then the shape is
:math:`(C_{out}, C_{in}/groups, k_d, K_h, K_w)`.
Currently weight data type only support float16 and float32.
- **bias** (Tensor) - Tensor of shape :math:`C_{in}`. Currently, only support none.
Outputs:
Tensor, the value that applied 3D convolution. The shape is :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`.
Raises:
TypeError: If `out_channel` or `group` is not an int.
TypeError: If `kernel_size`, `stride`, `pad` or `dilation` is neither an int nor a tuple.
ValueError: If `out_channel`, `kernel_size`, `stride` or `dilation` is less than 1.
ValueError: If `pad` is less than 0.
ValueError: If `pad_mode` is not one of 'same', 'valid' or 'pad'.
ValueError: If `pad` is a tuple whose length is not equal to 6.
ValueError: If `pad_mode` is not equal to 'pad' and `pad` is not equal to (0, 0, 0, 0, 0, 0).
ValueError: If `data_format` is not 'NCDHW'.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> x = Tensor(np.ones([16, 3, 10, 32, 32]), mindspore.float16)
>>> weight = Tensor(np.ones([32, 3, 4, 3, 3]), mindspore.float16)
>>> conv3d = ops.Conv3D(out_channel=32, kernel_size=(4, 3, 3))
>>> output = conv3d(x, weight)
>>> print(output.shape)
(16, 32, 7, 30, 30)
"""
@prim_attr_register
def __init__(self,
out_channel,
kernel_size,
mode=1,
pad_mode="valid",
pad=0,
stride=1,
dilation=1,
group=1,
data_format="NCDHW"):
"""Initialize Conv3D"""
self.init_prim_io_names(inputs=['x', 'w'], outputs=['output'])
self.kernel_size = _check_3d_int_or_tuple('kernel_size', kernel_size, self.name)
self.stride = _check_3d_int_or_tuple('stride', stride, self.name, allow_five=False, ret_five=True)
self.add_prim_attr('strides', self.stride)
self.dilation = _check_3d_int_or_tuple('dilation', dilation, self.name, allow_five=False,
ret_five=True, third_one=True)
self.add_prim_attr('dilations', self.dilation)
validator.check_value_type('pad', pad, (int, tuple), self.name)
if isinstance(pad, int):
pad = (pad,) * 6
if len(pad) != 6:
raise ValueError(f"For '{self.name}', attr 'pad' must be an positive int number or a tuple of "
f"six positive int numbers, but got {self.pad}.")
validator.check_value_type('pad_mode', pad_mode, [str], self.name)
self.pad_mode = validator.check_string(pad_mode.lower(), ['valid', 'same', 'pad'], 'pad_mode', self.name)
self.add_prim_attr('pad_mode', self.pad_mode)
if self.pad_mode != 'pad' and pad != (0, 0, 0, 0, 0, 0):
raise ValueError(f"For '{self.name}', the 'pad' must be zero or (0, 0, 0, 0, 0, 0) when 'pad_mode' "
f"is not \"pad\", but got 'pad' is {self.pad} and 'pad_mode' is {pad_mode}.")
self.add_prim_attr("pad", pad)
self.padding = pad
if self.pad_mode == 'pad':
for item in pad:
validator.check_non_negative_int(item, 'pad item', self.name)
self.mode = validator.check_equal_int(mode, 1, 'mode', self.name)
self.add_prim_attr('mode', self.mode)
self.format = validator.check_string(data_format, ['NCDHW'], 'data_format', self.name)
self.add_prim_attr('data_format', self.format)
self.out_channel = validator.check_positive_int(out_channel, 'out_channel', self.name)
self.group = validator.check_equal_int(group, 1, 'group', self.name)
self.add_prim_attr('groups', self.group)
self.add_prim_attr('offset_x', 0)
def infer_shape(self, x_shape, w_shape, b_shape=None):
validator.check_equal_int(len(w_shape), 5, "weight rank", self.name)
validator.check_equal_int(len(x_shape), 5, "x rank", self.name)
if b_shape is not None:
raise ValueError(f"For '{self.name}', the 'bias' currently only support None.")
validator.check(f"x_shape[1] // group", x_shape[1] // self.group, "w_shape[1]", w_shape[1], Rel.EQ, self.name)
validator.check('out_channel', self.out_channel, 'w_shape[0]', w_shape[0], Rel.EQ, self.name)
validator.check('kernel_size', self.kernel_size, 'w_shape[1:4]', tuple(w_shape[2:]), Rel.EQ, self.name)
kernel_size_d = w_shape[2]
kernel_size_h = w_shape[3]
kernel_size_w = w_shape[4]
stride_d = self.stride[2]
stride_h = self.stride[3]
stride_w = self.stride[4]
dilation_d = self.dilation[2]
dilation_h = self.dilation[3]
dilation_w = self.dilation[4]
if self.pad_mode == "valid":
d_out = math.ceil((x_shape[2] - dilation_d * (kernel_size_d - 1)) / stride_d)
h_out = math.ceil((x_shape[3] - dilation_h * (kernel_size_h - 1)) / stride_h)
w_out = math.ceil((x_shape[4] - dilation_w * (kernel_size_w - 1)) / stride_w)
pad_head, pad_tail, pad_top, pad_bottom, pad_left, pad_right = 0, 0, 0, 0, 0, 0
elif self.pad_mode == "same":
d_out = math.ceil(x_shape[2] / stride_d)
h_out = math.ceil(x_shape[3] / stride_h)
w_out = math.ceil(x_shape[4] / stride_w)
pad_needed_d = max(0, (d_out - 1) * stride_d + dilation_d * (kernel_size_d - 1) + 1 - x_shape[2])
pad_head = math.floor(pad_needed_d / 2)
pad_tail = pad_needed_d - pad_head
pad_needed_h = max(0, (h_out - 1) * stride_h + dilation_h * (kernel_size_h - 1) + 1 - x_shape[3])
pad_top = math.floor(pad_needed_h / 2)
pad_bottom = pad_needed_h - pad_top
pad_needed_w = max(0, (w_out - 1) * stride_w + dilation_w * (kernel_size_w - 1) + 1 - x_shape[4])
pad_left = math.floor(pad_needed_w / 2)
pad_right = pad_needed_w - pad_left
elif self.pad_mode == 'pad':
pad_head, pad_tail, pad_top, pad_bottom, pad_left, pad_right = self.padding
d_out = 1 + (x_shape[2] + pad_head + pad_tail - kernel_size_d - (kernel_size_d - 1)
* (dilation_d - 1)) / stride_d
h_out = 1 + (x_shape[3] + pad_top + pad_bottom - kernel_size_h - (kernel_size_h - 1)
* (dilation_h - 1)) / stride_h
w_out = 1 + (x_shape[4] + pad_left + pad_right - kernel_size_w - (kernel_size_w - 1)
* (dilation_w - 1)) / stride_w
d_out = math.floor(d_out)
h_out = math.floor(h_out)
w_out = math.floor(w_out)
self.pad_list = [pad_head, pad_tail, pad_top, pad_bottom, pad_left, pad_right]
filter_d = (self.kernel_size[0] - 1) * dilation_d + 1
filter_h = (self.kernel_size[1] - 1) * dilation_h + 1
filter_w = (self.kernel_size[2] - 1) * dilation_w + 1
validator.check_int_range(self.pad_list[0], 0, filter_d, Rel.INC_LEFT,
'pad_d belonging [0, filter_d)', self.name)
validator.check_int_range(self.pad_list[1], 0, filter_d, Rel.INC_LEFT,
'pad_d belonging [0, filter_d)', self.name)
validator.check_int_range(self.pad_list[2], 0, filter_h, Rel.INC_LEFT,
'pad_h belonging [0, filter_h)', self.name)
validator.check_int_range(self.pad_list[3], 0, filter_h, Rel.INC_LEFT,
'pad_h belonging [0, filter_h)', self.name)
validator.check_int_range(self.pad_list[4], 0, filter_w, Rel.INC_LEFT,
'pad_w belonging [0, filter_w)', self.name)
validator.check_int_range(self.pad_list[5], 0, filter_w, Rel.INC_LEFT,
'pad_w belonging [0, filter_w)', self.name)
self.add_prim_attr('pad_list', (pad_head, pad_tail, pad_top, pad_bottom, pad_left, pad_right))
out_channel = self.out_channel
out_shape = [x_shape[0], out_channel, d_out, h_out, w_out]
_check_shape('output', out_shape, self.name)
return out_shape
def infer_dtype(self, x_dtype, w_dtype, b_dtype=None):
args = {'x': x_dtype, 'w': w_dtype}
valid_dtypes = [mstype.float16, mstype.float32]
validator.check_tensors_dtypes_same_and_valid(args, valid_dtypes, self.name)
return x_dtype
class Conv3DBackpropInput(PrimitiveWithInfer):
"""
Computes the gradients of convolution 3D with respect to the input.
Args:
out_channel (int): The dimension of the output.
kernel_size (Union[int, tuple[int]]): The kernel size of the 3D convolution.
mode (int): Modes for different convolutions. Not currently used.
pad_mode (str): Modes to fill padding. It could be "valid", "same", or "pad". Default: "valid".
pad (Union(int, tuple[int])): The pad value to be filled. Default: 0. If `pad` is an integer, the paddings of
head, tail, top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of four
integers, the padding of head, tail, top, bottom, left and right equal to pad[0], pad[1], pad[2],
pad[3], pad[4] and pad[5] correspondingly.
stride (Union(int, tuple[int])): The stride to be applied to the convolution filter. Default: 1.
dilation (Union(int, tuple[int])): Specifies the space to use between kernel elements. Default: 1.
group (int): Splits input into groups. Default: 1.
data_format (str): The optional value for data format. Currently only support 'NCDHW'.
Inputs:
- **weight** (Tensor) - Set size of kernel is :math:`(D_in, K_h, K_w)`, then the shape is
:math:`(C_{out}, C_{in}, D_{in}, K_h, K_w)`. Currently weight data type only support float16 and float32.
- **dout** (Tensor) - the gradients with respect to the output of the convolution.
The shape conforms to the default.
data_format :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`. Currently dout data type only support float16
and float32.
- **input_size** (tuple(int)) - A tuple describes the shape of the input which conforms to the format
:math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`.
Outputs:
Tensor, the gradients with respect to the input of convolution 3D. It has the same shape as the input.
Raises:
TypeError: If `out_channel` or `group` is not an int.
TypeError: If `kernel_size`, `stride`, `pad` or `dilation` is neither an int not a tuple.
ValueError: If `out_channel`, `kernel_size`, `stride` or `dilation` is less than 1.
ValueError: If `pad` is less than 0.
ValueError: If `pad_mode` is not one of 'same', 'valid', 'pad'.
ValueError: If `pad` is a tuple whose length is not equal to 6.
ValueError: If `pad_mode` is not equal to 'pad' and `pad` is not equal to (0, 0, 0, 0, 0, 0).
ValueError: If `data_format` is not 'NCDHW'.
Supported Platforms:
``Ascend``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor, ops
>>> dout = Tensor(np.ones([16, 32, 10, 32, 32]), mindspore.float16)
>>> weight = Tensor(np.ones([32, 32, 4, 6, 2]), mindspore.float16)
>>> x = Tensor(np.ones([16, 32, 13, 37, 33]))
>>> conv3d_backprop_input = ops.Conv3DBackpropInput(out_channel=4, kernel_size=(4, 6, 2))
>>> output = conv3d_backprop_input(dout, weight, ops.shape(x))
>>> print(output.shape)
(16, 32, 13, 37, 33)
"""
@prim_attr_register
def __init__(self,
out_channel,
kernel_size,
mode=1,
pad_mode="valid",
pad=0,
stride=1,
dilation=1,
group=1,
data_format="NCDHW"):
"""Initialize Conv3DBackpropInput"""
self.init_prim_io_names(inputs=['filter', 'out_backprop', 'input_size'], outputs=['y'])
self.out_channel = validator.check_positive_int(out_channel, 'out_channel', self.name)
self.kernel_size = _check_3d_int_or_tuple('kernel_size', kernel_size, self.name)
self.stride = _check_3d_int_or_tuple('stride', stride, self.name, allow_five=True, ret_five=True)
self.add_prim_attr('strides', self.stride)
self.dilation = _check_3d_int_or_tuple('dilation', dilation, self.name, allow_five=True, ret_five=True)
self.add_prim_attr('dilations', self.dilation)
validator.check_value_type('pad', pad, (int, tuple), self.name)
validator.check_value_type('pad_mode', pad_mode, [str], self.name)
if isinstance(pad, int):
pad = (pad,) * 6
validator.check_equal_int(len(pad), 6, 'pad size', self.name)
self.add_prim_attr("pad", pad)
self.pad_list = pad
self.pad_mode = validator.check_string(pad_mode.lower(), ['valid', 'same', 'pad'], 'pad_mode', self.name)
if self.pad_mode != 'pad' and self.pad_list != (0, 0, 0, 0, 0, 0):
raise ValueError(f"For '{self.name}', the 'pad' must be (0, 0, 0, 0, 0, 0) "
f"when 'pad_mode' is not \"pad\", "
f"but got 'pad' is {self.pad_list} and 'pad_mode' is {self.pad_mode}.")
if self.pad_mode == 'pad':
for item in pad:
validator.check_non_negative_int(item, 'pad item', self.name)
self.add_prim_attr('pad_mode', self.pad_mode)
self.mode = validator.check_equal_int(mode, 1, 'mode', self.name)
self.add_prim_attr('mode', self.mode)
self.group = validator.check_positive_int(group, 'group', self.name)
self.add_prim_attr('groups', self.group)
self.format = validator.check_string(data_format, ['NCDHW'], 'format', self.name)
self.add_prim_attr('data_format', self.format)
def __infer__(self, w, doutput, x_size):
validator.check_equal_int(len(w['shape']), 5, 'The dimension of weight ', self.name)
validator.check_equal_int(len(doutput['shape']), 5, 'The dimension of dout', self.name)
x_size_v = x_size['value']
validator.check_equal_int(len(x_size_v), 5, 'The dimension of input_size', self.name)
validator.check_value_type('x_size', x_size_v, [tuple], self.name)
for i, dim_len in enumerate(x_size_v):
validator.check_value_type("x_size[%d]" % i, dim_len, [int], self.name)
args = {'doutput': doutput['dtype'], 'w': w['dtype']}
valid_dtypes = [mstype.float16, mstype.float32]
validator.check_tensors_dtypes_same_and_valid(args, valid_dtypes, self.name)
validator.check("filter's batch", w['shape'][0], "dout's channel", doutput['shape'][1], Rel.EQ, self.name)
validator.check("filter's channel * group", w['shape'][1] * self.group, \
"input_size's channel", x_size_v[1], Rel.EQ, self.name)
validator.check("input_size's batch", x_size_v[0], "dout's batch", doutput['shape'][0], Rel.EQ, self.name)
# infer shape
dout_shape = doutput['shape']
kernel_d = self.kernel_size[0]
kernel_h = self.kernel_size[1]
kernel_w = self.kernel_size[2]
stride_d = self.stride[2]
stride_h = self.stride[3]
stride_w = self.stride[4]
dilation_d = self.dilation[2]
dilation_h = self.dilation[3]
dilation_w = self.dilation[4]
# The pad_mode is valid by default. If pad_mode is not valid or same, then pad.
if self.pad_mode == "valid":
self.pad_list = (0, 0, 0, 0, 0, 0)
if self.pad_mode == "same":
pad_needed_d = max(0, (dout_shape[2] - 1) * stride_d + dilation_d * (kernel_d - 1) + 1 - x_size_v[2])
pad_head = math.floor(pad_needed_d / 2)
pad_tail = pad_needed_d - pad_head
pad_needed_h = max(0, (dout_shape[3] - 1) * stride_h + dilation_h * (kernel_h - 1) + 1 - x_size_v[3])
pad_top = math.floor(pad_needed_h / 2)
pad_bottom = pad_needed_h - pad_top
pad_needed_w = max(0, (dout_shape[4] - 1) * stride_w + dilation_w * (kernel_w - 1) + 1 - x_size_v[4])
pad_left = math.floor(pad_needed_w / 2)
pad_right = pad_needed_w - pad_left
self.pad_list = (pad_head, pad_tail, pad_top, pad_bottom, pad_left, pad_right)
self.add_prim_attr('pad_list', self.pad_list)
out = {
'value': None,
'shape': x_size_v,
'dtype': doutput['dtype'],
}
return out
def _deconv_output_length(input_length, kernel_size, stride_size, dilation_size):
filter_size = kernel_size + (kernel_size - 1) * (dilation_size - 1)
if filter_size - stride_size > 0:
length = input_length * stride_size + filter_size - stride_size
else:
length = input_length * stride_size
return length
class SparseApplyAdadelta(Primitive):
r"""
Updates relevant entries according to the adadelta scheme.
.. math::
\begin{array}{ll} \\
accum = \rho * accum + (1 - \rho) * grad^2 \\
\text{update} = \sqrt{\text{accum_update} + \epsilon} * \frac{grad}{\sqrt{accum + \epsilon}} \\
var = var - update * lr \\
\text{accum_update} = \rho * \text{accum_update} + (1 - \rho) * update^2 \\
\end{array}
Inputs of 'var', 'accum', 'accum_update' and 'grad' comply with the implicit type conversion rules
to make the data types consistent. Besides, inputs of 'lr' and 'rho' also support implicit type conversion.
If they have different data types, the lower priority data type will be converted to
relatively highest priority data type.
RuntimeError exception will be thrown when the data type conversion of Parameter is required.
Note:
If there are negative values or values greater than or equal to var.shape[0] in `indices`,
the behavior is undefined. Besides, this operator doesn't support duplicates in `indices`.
Args:
epsilon (float): A small value added for numerical stability. Its value must be greater or equal to 0.
use_locking (bool): If `True`, the `var` and `accum` tensors will be protected from being updated.
Default: False.
Inputs:
- **var** (Parameter) - Weights to be updated. With float32 or float16 data type.
- **accum** (Parameter) - Accumulation to be updated. Mush have the same shape and dtype as `var`.
With float32 or float16 data type.
- **accum_update** (Parameter) - Accum_update to be updated. Must have the same shape and dtype as `var`.
With float32 or float16 data type.
- **lr** (Union[float, Tensor]) - Learning rate, must be a scalar. With float32 or float16 data type.
- **rho** (Union[float, Tensor]) - Decay rate, must be a scalar. With float32 or float16 data type.
- **grad** (Tensor) - A tensor for gradient. Must have the same shape and dtype as `var`.
- **indices** (Tensor) - A tensor of indices in the first dimension of `var` and `accum`.
Must be one of the following types: int32, int64 and indices.shape[0] = grad.shape[0].
Outputs:
Tuple of 3 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
- **accum_update** (Tensor) - The same shape and data type as `accum_update`.
Raises:
TypeError: If `epsilon` is not a float.
TypeError: If `use_locking` is not a bool.
TypeError: If `var`, 'accum', 'accum_update' is not a Parameter.
TypeError: If dtype of `accum`, `accum_updata`, `grad` is not same as `var`.
TypeError: If dtype of `var`, `accum`, `accum_update`, `lr`, `rho` or `grad` is neither float16 nor
float32.
TypeError: If dtype of `indices` is neither int32 nor int64.
ValueError: If `epsilon` is less than 0.
ValueError: If the shape of `accum`, `accum_updata`, `grad` is not same as `var`.
ValueError: If the rank of `indices` is not equal to 1.
ValueError: If shape of `indices` is not same as shape of first dimension of `grad`.
Supported Platforms:
``Ascend``
Examples:
>>> class Net(nn.Cell):
... def __init__(self,epsilon,use_locking = False):
... super(Net, self).__init__()
... self.sparse_apply_adadelta = P.SparseApplyAdadelta(epsilon,use_locking)
... self.var = Parameter(Tensor(np.array([[1.0,2.0],[2.0,3.0]]).astype(np.float32)), name="var")
... self.accum = Parameter(Tensor(np.array([[1.5,2.5],[3.5,4.5]]).astype(np.float32)), name="accum")
... self.accum_update = Parameter(Tensor(np.array([[1.2,2.4],[1.8,0.6]]).astype(np.float32)),
... name="accum_update")
... def construct(self, lr, rho, grad, indices):
... out = self.sparse_apply_adadelta(self.var, self.accum, self.accum_update, lr, rho, grad, indices)
... return out
...
>>> epsilon = 1e-6
>>> net = Net(epsilon)
>>> lr = 0.01
>>> rho = 0.2
>>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32))
>>> output = net(lr, rho, grad, Tensor(np.array([0,1],dtype=np.int32)))
>>> print(output)
(Tensor(shape=[2, 2], dtype=Float32, value=
[[ 9.94611859e-01, 1.98851788e+00],
[ 1.99840558e+00, 2.99478507e+00]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 3.72000009e-01, 8.91999960e-01],
[ 7.08000004e-01, 1.41200006e+00]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 4.72257614e-01, 1.53470778e+00],
[ 3.80338937e-01, 3.37563992e-01]]))
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('accum_updata', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('lr', dtype=sig.sig_dtype.T1),
sig.make_sig('rho', dtype=sig.sig_dtype.T1),
sig.make_sig('grad', dtype=sig.sig_dtype.T),
sig.make_sig('indices', dtype=sig.sig_dtype.T2),
)
@prim_attr_register
def __init__(self, epsilon, use_locking=False):
"""Initialize SparseApplyAdadelta"""
validator.check_value_type("epsilon", epsilon, [float], self.name)
validator.check_number("epsilon", epsilon, 0.0, Rel.GE, self.name)
validator.check_value_type("use_locking", use_locking, [bool], self.name)
class CTCLossV2(Primitive):
"""
Calculates the CTC (Connectionist Temporal Classification) loss and the gradient.
The CTC algorithm is proposed in `Connectionist Temporal Classification: Labeling Unsegmented Sequence Data with
Recurrent Neural Networks <http://www.cs.toronto.edu/~graves/icml_2006.pdf>`_.
Args:
blank (int): The blank label. Default: 0.
reduction (string): Apply specific reduction method to the output. Currently only support 'none',
not case sensitive. Default: "none".
zero_infinity (bool): Whether to set infinite loss and correlation gradient to zero. Default: False.
Inputs:
- **log_probs** (Tensor) - A tensor of shape (T, N, C), where T is input length, N is batch size and C is number
of classes (including blank).
- **targets** (Tensor) - A tensor of shape (N, S), where S is max target length, means the target sequences.
- **input_lengths** (Union(Tuple, Tensor)) - A tuple or Tensor of shape(N). It means the lengths of the input.
- **target_lengths** (Union(Tuple, Tensor)) - A tuple or Tensor of shape(N). It means the lengths of the target.
Outputs:
- **neg_log_likelihood** (Tensor) - A loss value which is differentiable with respect to each input node.
- **log_alpha** (Tensor) - The probability of possible trace of input to target.
Raises:
TypeError: If `zero_infinity` is not a bool, reduction is not string.
Supported Platforms:
"""
@prim_attr_register
def __init__(self, blank, reduction="none", zero_infinity=False):
"""Initialize CTCLossV2"""
self.init_prim_io_names(inputs=["log_probs", "targets", "input_lengths", "target_lengths"],
outputs=["neg_log_likelihood", "log_alpha"])
validator.check_value_type("blank", blank, [int], self.name)
self.add_prim_attr("blank", blank)
validator.check_value_type("reduction", reduction, [str], self.name)
self.reduction = reduction.lower()
validator.check_string(self.reduction, ['none'], 'reduction', self.name)
self.add_prim_attr("reduction", self.reduction)
validator.check_value_type("zero_infinity", zero_infinity, [bool], self.name)
self.add_prim_attr("zero_infinity", zero_infinity)
class CTCLossV2Grad(Primitive):
"""
Calculates the gradient of CTC (Connectionist Temporal Classification) loss.
The CTC algorithm is proposed in `Connectionist Temporal Classification: Labeling Unsegmented Sequence Data with
Recurrent Neural Networks <http://www.cs.toronto.edu/~graves/icml_2006.pdf>`_.
Args:
blank (int): The blank label. Default: 0.
reduction (string): Apply specific reduction method to the output. Currently only support 'none'.
Default(None): "none".
zero_infinity (bool): Whether to set infinite loss and correlation gradient to zero. Default: False.
Inputs:
- **grad_out** (Tenosr) - Gradient renewal codfficient, A tensor for shape (N), where N is batch size.
- **log_probs** (Tensor) - A tensor of shape (T, N, C), where T is input length, N is batch size and C is number
of classes (including blank).
- **targets** (Tensor) - A tensor of shape (N, S), where S is max target length, means the target sequences.
- **input_lengths** (Union(tuple, Tensor)) - A tuple or Tensor of shape(N). It means the lengths of the input.
- **target_lengths** (Union(tuple, Tensor)) - A tuple or Tensor of shape(N). It means the lengths of the target.
- **log_alpha** (Tensor) - The probability of possible trace of input to target.
- **neg_log_likelihood** (Tensor) - A loss value which is differentiable with respect to each input node.
Outputs:
- **grad** (Tensor) - The grad of Connectionist Temporal Classification Loss
Raises:
TypeError: If `zero_infinity` is not a bool, reduction is not string.
Supported Platforms:
``Ascend``
"""
@prim_attr_register
def __init__(self, blank, reduction="none", zero_infinity=False):
"""Initialize CTCLossV2Grad"""
self.init_prim_io_names(inputs=["grad_out", "log_probs", "targets", "input_lengths", "target_lengths",
"neg_log_likelihood", "log_alpha"],
outputs=["grad"])
validator.check_value_type("blank", blank, [int], self.name)
self.add_prim_attr("blank", blank)
validator.check_value_type("reduction", reduction, [str], self.name)
self.add_prim_attr("reduction", reduction)
validator.check_value_type("zero_infinity", zero_infinity, [bool], self.name)
self.add_prim_attr("zero_infinity", zero_infinity)
[docs]class Conv3DTranspose(PrimitiveWithInfer):
r"""
Computes a 3D transposed convolution, which is also known as a deconvolution
(although it is not an actual deconvolution).
Input is typically of shape :math:`(N, C, D, H, W)`, where :math:`N` is batch size, :math:`C` is channel number,
:math:`D` is depth, :math:`H` is height, :math:`W` is width.
If the 'pad_mode' is set to be "pad", the depth, height and width of output are defined as:
.. math::
D_{out} = (D_{in} - 1) \times \text{stride}[0] - 2 \times \text{pad}[0] + \text{dilation}[0]
\times (\text{kernel_size}[0] - 1) + \text{output_padding}[0] + 1
H_{out} = (H_{in} - 1) \times \text{stride}[1] - 2 \times \text{pad}[1] + \text{dilation}[1]
\times (\text{kernel_size}[1] - 1) + \text{output_padding}[1] + 1
W_{out} = (W_{in} - 1) \times \text{stride}[2] - 2 \times \text{pad}[2] + \text{dilation}[2]
\times (\text{kernel_size}[2] - 1) + \text{output_padding}[2] + 1
Args:
in_channel (int): The channel of the input x.
out_channel (int): The channel of the weight x.
kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers.
Specifies the depth, height and width of the 3D convolution window.
Single int means the value is for the depth, height and width of the kernel.
A tuple of 3 ints means the first value is for the depth, the second value is for the height and the
other is for the width of the kernel.
mode (int): Modes for different convolutions. Default is 1. It is currently not used.
pad_mode (str): Specifies padding mode. The optional values are
"same", "valid", "pad". Default: "valid".
- same: Adopts the way of completion. The depth, height and width of the output will be equal to
the input `x` divided by stride. The padding will be evenly calculated in head and tail, top and bottom,
left and right directions possiblily.
Otherwise, the last extra padding will be calculated from the tail, bottom and the right side.
If this mode is set, `pad` must be 0.
- valid: Adopts the way of discarding. The possible largest depth, height and width of output
will be returned without padding. Extra pixels will be discarded. If this mode is set, `pad`
and `output_padding` must be 0.
- pad: Implicit paddings on both sides of the input in depth, height and width. The number of `pad` will
be padded to the input Tensor borders. `pad` must be greater than or equal to 0.
pad (Union(int, tuple[int])): The pad value to be filled. Default: 0. If `pad` is an integer, the paddings of
head, tail, top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of six integers,
the padding of head, tail, top, bottom, left and right equal to pad[0], pad[1], pad[2], pad[3], pad[4]
and pad[5] correspondingly.
stride (Union(int, tuple[int])): The distance of kernel moving, an int number that represents
the depth, height and width of movement are both strides, or a tuple of three int numbers that
represent depth, height and width of movement respectively. Default: 1.
dilation (Union(int, tuple[int])): Specifies the space to use between kernel elements. Default: 1.
group (int): Splits input into groups. Default: 1. Only 1 is currently supported.
output_padding (Union(int, tuple[int])): Add extra size to each dimension of the output. Default: 0.
data_format (str): The optional value for data format. Currently only 'NCDHW' is supported.
Inputs:
- **dout** (Tensor) - The gradients with respect to the output of the convolution.
The shape conforms to the default.
data_format :math:`(N, C_{in}, D_{out}, H_{out}, W_{out})`. Currently dout data type only supports float16
and float32.
- **weight** (Tensor) - Set size of kernel is :math:`(K_d, K_h, K_w)`, then the shape is
:math:`(C_{in}, C_{out}//group, K_d, K_h, K_w)`. Where :math:`group` is the Args parameter,
:math:`//` is the symbol for integer division.
Currently weight data type only supports float16 and float32.
- **bias** (Tensor) - Tensor of shape :math:`C_{out}`. Currently, only support none. Default: None.
Outputs:
Tensor, the gradients with respect to the input of convolution 3D.
Tensor of shape :math:`(N, C_{out}//group, D_{out}, H_{out}, W_{out})`,
where :math:`group` is the Args parameter.
Supported Platforms:
``Ascend`` ``GPU``
Raises:
TypeError: If `in_channel`, `out_channel` or `group` is not an int.
TypeError: If `kernel_size`, `stride`, `pad` , `dilation` or `output_padding` is neither an int not a tuple.
ValueError: If `in_channel`, `out_channel`, `kernel_size`, `stride` or `dilation` is less than 1.
ValueError: If `pad` is less than 0.
ValueError: If `pad_mode` is not one of 'same', 'valid' nor 'pad'.
ValueError: If `pad` is a tuple whose length is not equal to 6.
ValueError: If `pad_mode` is not equal to 'pad' and `pad` is not equal to (0, 0, 0, 0, 0, 0).
ValueError: If `data_format` is not 'NCDHW'.
TypeError: If data type of dout and weight is not float16.
ValueError: If bias is not none. The rank of dout and weight is not 5.
Examples:
>>> dout = Tensor(np.ones([32, 16, 10, 32, 32]), mindspore.float16)
>>> weight = Tensor(np.ones([16, 3, 4, 6, 2]), mindspore.float16)
>>> conv3d_transpose = ops.Conv3DTranspose(in_channel=16, out_channel=3, kernel_size=(4, 6, 2))
>>> output = conv3d_transpose(dout, weight)
>>> print(output.shape)
(32, 3, 13, 37, 33)
"""
@prim_attr_register
def __init__(self,
in_channel,
out_channel,
kernel_size,
mode=1,
pad_mode='valid',
pad=0,
stride=1,
dilation=1,
group=1,
output_padding=0,
data_format="NCDHW"):
"""Initialize Conv3DTranspose"""
self.init_prim_io_names(inputs=['x', 'filter'], outputs=['output'])
self.in_channel = validator.check_positive_int(in_channel, 'in_channel', self.name)
self.add_prim_attr('in_channel', self.in_channel)
self.out_channel = validator.check_positive_int(out_channel, 'out_channel', self.name)
self.add_prim_attr('out_channel', self.out_channel)
self.kernel_size = _check_3d_int_or_tuple('kernel_size', kernel_size, self.name)
self.stride = _check_3d_int_or_tuple('stride', stride, self.name, allow_five=False,
ret_five=True)
self.add_prim_attr('strides', self.stride)
self.dilation = _check_3d_int_or_tuple('dilation', dilation, self.name, allow_five=False,
ret_five=True, third_one=True)
self.add_prim_attr('dilations', self.dilation)
validator.check_value_type('pad', pad, (int, tuple), self.name)
validator.check_value_type('pad_mode', pad_mode, [str], self.name)
if isinstance(pad, int):
pad = (pad,) * 6
if len(pad) != 6:
raise ValueError(f"For '{self.name}', attr 'pad' must be an positive int number or a tuple of "
f"six positive int numbers, but got {self.pad}.")
self.pad_list = pad
validator.check_value_type('pad_mode', pad_mode, [str], self.name)
self.pad_mode = validator.check_string(pad_mode.lower(), ['valid', 'same', 'pad'], 'pad_mode', self.name)
self.add_prim_attr('pad_mode', self.pad_mode)
if self.pad_mode != 'pad' and pad != (0, 0, 0, 0, 0, 0):
raise ValueError(f"For '{self.name}', the 'pad' must be zero or (0, 0, 0, 0, 0, 0) when 'pad_mode' "
f"is not \"pad\", but got 'pad' is {self.pad} and 'pad_mode' is {pad_mode}.")
if self.pad_mode == 'pad':
for item in self.pad_list:
validator.check_non_negative_int(item, 'pad item', self.name)
self.mode = validator.check_equal_int(mode, 1, 'mode', self.name)
self.add_prim_attr('mode', self.mode)
self.group = validator.check_equal_int(group, 1, 'group', self.name)
self.add_prim_attr('groups', self.group)
self.format = validator.check_string(data_format, ['NCDHW'], 'format', self.name)
self.add_prim_attr('data_format', self.format)
self.output_padding = _check_3d_int_or_tuple('output_padding', output_padding, self.name,
allow_five=False, ret_five=True, greater_zero=False)
output_padding_ = (self.output_padding[2], self.output_padding[3], self.output_padding[4])
if self.pad_mode != 'pad' and output_padding_ != (0, 0, 0):
raise ValueError(f"For '{self.name}', the 'output_padding' must be zero or (0, 0, 0) "
f"when 'pad_mode' is not \"pad\", but got 'output_padding' is "
f"{output_padding} and 'pad_mode' is {pad_mode}.")
validator.check_int_range(self.kernel_size[0] * self.kernel_size[1] * self.kernel_size[2], 1, 343, Rel.INC_BOTH,
'The product of height, width and depth of kernel_size belonging [1, 343]', self.name)
validator.check_int_range(self.stride[0] * self.stride[1] * self.stride[2], 1, 343, Rel.INC_BOTH,
'The product of height, width and depth of stride belonging [1, 343]', self.name)
validator.check_int_range(self.stride[1] * self.stride[2], 1, 256, Rel.INC_BOTH,
'The product of height, width and depth of stride belonging [1, 256]', self.name)
validator.check_int_range(self.output_padding[2], 0, max(self.dilation[2], self.stride[2]), Rel.INC_LEFT,
'output_padding_d belonging [0, max(stride_d, dilation_d))', self.name)
validator.check_int_range(self.output_padding[3], 0, max(self.dilation[3], self.stride[3]), Rel.INC_LEFT,
'output_padding_h belonging [0, max(stride_h,dilation_h))', self.name)
validator.check_int_range(self.output_padding[4], 0, max(self.dilation[4], self.stride[4]), Rel.INC_LEFT,
'output_padding_w belonging [0, max(stride_w,dilation_w))', self.name)
def __infer__(self, x, w, b=None):
args = {'x': x['dtype'], 'w': w['dtype']}
if b is not None:
raise ValueError(f"For '{self.name}', the 'bias' currently only support None, but got {b}.")
valid_dtypes = [mstype.float16, mstype.float32]
validator.check_tensors_dtypes_same_and_valid(args, valid_dtypes, self.name)
# infer shape
x_shape = x['shape']
w_shape = w['shape']
validator.check_equal_int(len(w_shape), 5, "weight rank", self.name)
validator.check_equal_int(len(x_shape), 5, "x rank", self.name)
validator.check("filter's batch", w_shape[0], "input x's channel",
x_shape[1], Rel.EQ, self.name)
kernel_d, kernel_h, kernel_w = self.kernel_size
_, _, stride_d, stride_h, stride_w = self.stride
_, _, dilation_d, dilation_h, dilation_w = self.dilation
if self.pad_mode == "valid":
d_out = _deconv_output_length(x_shape[2], kernel_d, stride_d, dilation_d)
h_out = _deconv_output_length(x_shape[3], kernel_h, stride_h, dilation_h)
w_out = _deconv_output_length(x_shape[4], kernel_w, stride_w, dilation_w)
self.pad_list = (0, 0, 0, 0, 0, 0)
self.output_padding = (0, 0, 0, 0, 0)
elif self.pad_mode == "same":
d_out = x_shape[2] * stride_d
h_out = x_shape[3] * stride_h
w_out = x_shape[4] * stride_w
pad_needed_d = max(0, (x_shape[2] - 1) * stride_d + dilation_d * (kernel_d - 1) + 1 - d_out)
pad_head = math.floor(pad_needed_d / 2)
pad_tail = pad_needed_d - pad_head
pad_needed_h = max(0, (x_shape[3] - 1) * stride_h + dilation_h * (kernel_h - 1) + 1 - h_out)
pad_top = math.floor(pad_needed_h / 2)
pad_bottom = pad_needed_h - pad_top
pad_needed_w = max(0, (x_shape[4] - 1) * stride_w + dilation_w * (kernel_w - 1) + 1 - w_out)
pad_left = math.floor(pad_needed_w / 2)
pad_right = pad_needed_w - pad_left
self.pad_list = (pad_head, pad_tail, pad_top, pad_bottom, pad_left, pad_right)
self.output_padding = (0, 0, 0, 0, 0)
elif self.pad_mode == 'pad':
pad_head, pad_tail, pad_top, pad_bottom, pad_left, pad_right = self.pad_list
d_out = (x_shape[2] - 1) * self.stride[2] - (pad_head + pad_tail) + self.dilation[2] * \
(self.kernel_size[0] - 1) + self.output_padding[2] + 1
h_out = (x_shape[3] - 1) * self.stride[3] - (pad_top + pad_bottom) + self.dilation[3] * \
(self.kernel_size[1] - 1) + self.output_padding[3] + 1
w_out = (x_shape[4] - 1) * self.stride[4] - (pad_left + pad_right) + self.dilation[4] * \
(self.kernel_size[2] - 1) + self.output_padding[4] + 1
self.add_prim_attr('pad_list', self.pad_list)
self.add_prim_attr('output_padding', self.output_padding)
output_shape = (x_shape[0], w_shape[1] * self.group, d_out, h_out, w_out)
self.add_prim_attr('input_size', output_shape)
out = {
'value': None,
'shape': output_shape,
'dtype': x['dtype'],
}
return out
[docs]class SoftShrink(Primitive):
r"""
Applies the SoftShrink function element-wise.
Refer to :func:`mindspore.ops.soft_shrink` for more detail.
Supported Platforms:
``Ascend`` ``CPU`` ``GPU``
Examples:
>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> input_x = Tensor(np.array([[ 0.5297, 0.7871, 1.1754], [ 0.7836, 0.6218, -1.1542]]), mindspore.float16)
>>> softshrink = ops.SoftShrink()
>>> output = softshrink(input_x)
>>> print(output)
[[ 0.02979 0.287 0.676 ]
[ 0.2837 0.1216 -0.6543 ]]
"""
@prim_attr_register
def __init__(self, lambd=0.5):
"""Initialize SoftShrink"""
validator.check_value_type("lambd", lambd, [float], self.name)
validator.check_number("lambd", lambd, 0, Rel.GE, self.name)
[docs]class HShrink(Primitive):
r"""
Hard Shrink activation function.
Refer to :func:`mindspore.ops.hardshrink` for more detail.
Supported Platforms:
``Ascend`` ``CPU`` ``GPU``
Examples:
>>> import mindspore as ms
>>> import mindspore.ops as ops
>>> from mindspore import Tensor, nn
>>> import numpy as np
>>> input_x = Tensor(np.array([[0.5, 1, 2.0], [0.0533, 0.0776, -2.1233]]), ms.float32)
>>> hshrink = ops.HShrink()
>>> output = hshrink(input_x)
>>> print(output)
[[ 0. 1. 2. ]
[ 0. 0. -2.1233]]
"""
@prim_attr_register
def __init__(self, lambd=0.5):
"""Initialize HShrink"""
validator.check_value_type('lambd', lambd, [float], self.name)
if lambd < 0.0:
lambd = 0.0
self.add_prim_attr('lambd', lambd)
[docs]class ApplyAdagradDA(Primitive):
r"""
Update `var` according to the proximal adagrad scheme.
The Adagrad algorithm was proposed in
`Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
<http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.
.. math::
\begin{array}{ll} \\
grad\_accum += grad \\
grad\_squared\_accum += grad * grad \\
tmp\_val=
\begin{cases}
sign(grad\_accum) * max\left \{|grad\_accum|-l1*global\_step, 0\right \} & \text{ if } l1>0 \\
grad\_accum & \text{ otherwise } \\
\end{cases} \\
x\_value = -1 * lr * tmp\_val \\
y\_value = l2 * global\_step * lr + \sqrt{grad\_squared\_accum} \\
var = \frac{ x\_value }{ y\_value }
\end{array}
Inputs of `var`, `gradient_accumulator`, `gradient_squared_accumulator` and `grad`
comply with the implicit type conversion rules to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Args:
use_locking (bool): If `True`, updating of the `var` and `accum` tensors will be protected by a lock.
Otherwise the behavior is undefined, but may exhibit less contention. Default: False.
Inputs:
- **var** (Parameter) - Variable to be updated. The data type must be float16 or float32.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **gradient_accumulator** (Parameter) - The dict of mutable tensor gradient_accumulator. Must have the same
shape and dtype as `var`.
- **gradient_squared_accumulator** (Parameter) - The dict of mutable tensor gradient_squared_accumulator.
Must have the same shape and dtype as `var`.
- **grad** (Tensor) - A tensor for gradient. Must have the same shape and dtype as `var`.
- **lr** ([Number, Tensor]) - Scaling factor. Must be a scalar. With float32 or float16 data type.
- **l1** ([Number, Tensor]) - L1 regularization. Must be a scalar. With float32 or float16 data type.
- **l2** ([Number, Tensor]) - L2 regularization. Must be a scalar. With float32 or float16 data type.
- **global_step** ([Number, Tensor]) - Training step number. Must be a scalar. With int32 or int64 data type.
Outputs:
Tuple of 3 Tensors, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **gradient_accumulator** (Tensor) - The same shape and data type as `gradient_accumulator`.
- **gradient_squared_accumulator** (Tensor) - The same shape and data type as `gradient_squared_accumulator`.
Raises:
TypeError: If `var`, `gradient_accumulator` or `gradient_squared_accumulator` is not a Parameter.
TypeError: If `grad` is not a Tensor.
TypeError: If `lr`, `l1`, `l2` or `global_step` is neither a Number nor a Tensor.
TypeError: If use_locking is not a bool.
TypeError: If dtype of `var`, `gradient_accumulator`, `gradient_squared_accumulator`, `grad`,
`lr`, `l1` or `l2` is neither float16 nor float32.
TypeError: If dtype of `gradient_accumulator`, `gradient_squared_accumulator` or `grad` is not same as `var`.
TypeError: If dtype of `global_step` is not int32 nor int64.
ValueError: If the shape size of `lr`, `l1`, `l2` and `global_step` is not 0.
RuntimeError: If the data type of `var`, `gradient_accumulator`, `gradient_squared_accumulator` and `grad`
conversion of Parameter is not supported.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class ApplyAdagradDANet(nn.Cell):
... def __init__(self, use_locking=False):
... super(ApplyAdagradDANet, self).__init__()
... self.apply_adagrad_d_a = P.ApplyAdagradDA(use_locking)
... self.var = Parameter(Tensor(np.array([[0.6, 0.4], [0.1, 0.5]]).astype(np.float32)), name="var")
... self.gradient_accumulator = Parameter(Tensor(np.array([[0.1, 0.3],
... [0.1, 0.5]]).astype(np.float32)),
... name="gradient_accumulator")
... self.gradient_squared_accumulator = Parameter(Tensor(np.array([[0.2, 0.1],
... [0.1, 0.2]]).astype(np.float32)),
... name="gradient_squared_accumulator")
... self.gradient_accumulator = Parameter(Tensor(np.array([[0.1, 0.3],
... [0.1, 0.5]]).astype(np.float32)),
... name="gradient_accumulator")
... def construct(self, grad, lr, l1, l2, global_step):
... out = self.apply_adagrad_d_a(self.var, self.gradient_accumulator,
... self.gradient_squared_accumulator, grad, lr, l1, l2, global_step)
... return out
...
>>> net = ApplyAdagradDANet()
>>> grad = Tensor(np.array([[0.3, 0.4], [0.1, 0.2]]).astype(np.float32))
>>> lr = Tensor(0.001, mstype.float32)
>>> l1 = Tensor(0.001, mstype.float32)
>>> l2 = Tensor(0.001, mstype.float32)
>>> global_step = Tensor(2, mstype.int32)
>>> output = net(grad, lr, l1, l2, global_step)
>>> print(output)
(Tensor(shape=[2, 2], dtype=Float32, value=
[[-7.39064650e-04, -1.36888528e-03],
[-5.96988888e-04, -1.42478070e-03]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 4.00000006e-01, 7.00000048e-01],
[ 2.00000003e-01, 6.99999988e-01]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 2.90000021e-01, 2.60000020e-01],
[ 1.09999999e-01, 2.40000010e-01]]))
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('gradient_accumulator', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('gradient_squared_accumulator', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('grad', dtype=sig.sig_dtype.T),
sig.make_sig('lr', dtype=sig.sig_dtype.T1),
sig.make_sig('l1', dtype=sig.sig_dtype.T2),
sig.make_sig('l2', dtype=sig.sig_dtype.T3),
sig.make_sig('global_step', dtype=sig.sig_dtype.T4)
)
@prim_attr_register
def __init__(self, use_locking=False):
"""Initialize ApplyAdagradDA"""
validator.check_value_type("use_locking", use_locking, [bool], self.name)
self.add_prim_attr('side_effect_mem', True)
class SparseApplyRMSProp(Primitive):
r"""
Update relevant entries according to the rmsprop algorithm.
.. math::
\begin{array}{ll} \\
ms = rho * ms_{t-1} + (1 - rho) * grad * grad \\
mom = momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon) \\
var = var - mom
\end{array}
Inputs of `var`, `ms`, `mom` and `grad` comply with the implicit type conversion rules
to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
the relatively highest priority data type.
Args:
rho (float): Decay rate. The value should between 0 and 1, otherwise the behavior is undefined.
momentum (float): Momentum. The value should be greater or equal to 0, otherwise the behavior is undefined.
epsilon (float): A small value added for numerical stability. The value should be greater than 0,
otherwise the behavior is undefined.
use_locking (bool): If `True`, updating of the var, ms, and mom tensors is protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention. Default: False.
Inputs:
- **var** (Parameter) - Variable to be updated. The data type must be float16 or float32.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **ms** (Parameter) - The dict of mutable tensor ms. Must have the same shape and dtype as `var`.
- **mom** (Parameter) - The dict of mutable tensor mom. Must have the same shape and dtype as `var`.
- **lr** ([Number, Tensor]) - Learning rate. Must be a scalar. With float16 or float32 data type.
- **grad** (Tensor) - A tensor for gradient. Must have the same shape and dtype as `var`.
- **indices** (Tensor) - A tensor of indices in the first dimension of `var`, `ms` and `mom`.
If there are duplicates in `indices`, the behavior is undefined. Must be one of the
following types: int32, int64 and indices.shape[0] = var.shape[0].
Outputs:
Tuple of 3 Tensors, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **ms** (Tensor) - The same shape and data type as `ms`.
- **mom** (Tensor) - The same shape and data type as `mom`.
Raises:
TypeError: If `var`, `ms` or `mom` is not a Parameter.
TypeError: If `grad` or `indices` is not a Tensor.
TypeError: If dtype of `var`, `ms`, `mom`, `lr`, `grad` is neither float16 nor float32.
TypeError: If dtype of `indices` is neither int32 nor int64.
TypeError: If `lr` is neither a Number or a Tensor.
TypeError: If `use_locking` is not a bool.
TypeError: If dtype of `epsilon`, `rho`, `momentum` is not a float.
ValueError: If shape of `ms`, `mom`, `grad` is not same as `var`.
ValueError: If the shape size of `lr` is not 0.
ValueError: If shape of `indices` is not same as shape of first dimension of `var`.
ValueError: If `epsilon` is less than or equal to 0.
ValueError: If `momentum` is less than 0.
ValueError: If `rho` is less than 0 or greater than 1.
ValueError: If dimension of `var` is less than 1.
RuntimeError: If the data type of `var`, `ms`, `mom` and `grad` conversion of Parameter is not supported.
Supported Platforms:
``Ascend``
Examples:
>>> class SparseApplyRMSPropNet(nn.Cell):
... def __init__(self, rho, momentum, epsilon, use_locking=False):
... super(SparseApplyRMSPropNet, self).__init__()
... self.sparse_apply_r_m_s_prop = P.SparseApplyRMSProp(rho, momentum, epsilon, use_locking)
... self.var = Parameter(Tensor(np.array([[0.6, 0.3], [0.1, 0.5]]).astype(np.float32)), name="var")
... self.ms = Parameter(Tensor(np.array([[0.2, 0.4], [0.1, 0.3]]).astype(np.float32)), name="ms")
... self.mom = Parameter(Tensor(np.array([[0.3, 0.1], [0.3, 0.6]]).astype(np.float32)), name="mom")
... def construct(self, lr, grad, indices):
... out = self.sparse_apply_r_m_s_prop(self.var, self.ms, self.mom, lr, grad, indices)
... return out
...
>>> rho = 0.2
>>> momentum = 0.01
>>> epsilon = 1e-6
>>> net = SparseApplyRMSPropNet(rho, momentum, epsilon)
>>> lr = 0.01
>>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32))
>>> indices = Tensor(np.array([0, 1], dtype=np.int32))
>>> out = net(lr, grad, indices)
>>> print(out)
(Tensor(shape=[2, 2], dtype=Float32, value=
[[ 5.88035822e-01, 2.88811117e-01],
[ 9.10239667e-02, 4.83422279e-01]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 1.12000003e-01, 4.72000003e-01],
[ 2.80000009e-02, 5.72000027e-01]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 1.19641740e-02, 1.11888833e-02],
[ 8.97603668e-03, 1.65777095e-02]]))
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('ms', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('mom', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('lr', dtype=sig.sig_dtype.T1),
sig.make_sig('grad', dtype=sig.sig_dtype.T),
sig.make_sig('indices', dtype=sig.sig_dtype.T2)
)
@prim_attr_register
def __init__(self, rho, momentum, epsilon, use_locking=False):
""""Initialize SparseApplyRMSProp"""
validator.check_value_type("rho", rho, [float], self.name)
validator.check_value_type("momentum", momentum, [float], self.name)
validator.check_value_type("epsilon", epsilon, [float], self.name)
validator.check_value_type("use_locking", use_locking, [bool], self.name)
self.epsilon = validator.check_number("epsilon", epsilon, 0.0, Rel.GT, self.name)
self.momentum = validator.check_number("momentum", momentum, 0.0, Rel.GE, self.name)
self.rho = validator.check_float_range(rho, 0.0, 1.0, Rel.INC_BOTH, "rho", self.name)
class SparseApplyCenteredRMSProp(Primitive):
r"""
Update `var` according to the centered RMSProp algorithm.
.. math::
\begin{array}{l}
\text { mean_square }=\text { decay } * \text { mean_square }+(1-\text { decay }) *
\text { gradient }^{2} \\
\text { mean_grad }=\text { decay } * \text { mean_grad }+(1-\text { decay }) *
\text { gradient } \\
\text { Delta }=l r * \frac{\text { gradient }}{\sqrt{\text { mean_square }+
\text { epsilon-mean_grad }^{2}}} \\
\text { ms }<-\text { rho } * \text { ms }_{t-1}+(1-\text { rho }) * \text { grad } * \text { grad } \\
\text { mom }<-\text { momentum } * \text { mom }_{t-1}+\operatorname{lr} *
\frac{\text { grad }}{\sqrt{\text { ms+epsilon }}} \\
\text { var }<-\text { var }-\text { mom }
\end{array}
.. warning::
In dense implementation of this algorithm, `mean_gradient`, `mean_square`, and `moment` will update
even if the `grad` is zero. But in this sparse implementation, `mean_gradient`, `mean_square`, and `moment`
will not update in iterations during which the `grad` is zero.
Args:
use_locking (bool): If `True`, updating of the `var`, `mg`, `ms`, and `mom` tensors will be protected by a lock.
Otherwise the behavior is undefined, but may exhibit less contention. Default: False.
Inputs:
- **var** (Parameter) - Variable tensor to be updated. The data type must be int8, int16, int32, int64,
uint8, uint16, uint32, uint64, float16, float32 or float64.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **mg** (Parameter) - Mean gradients. Must have the same shape and dtype as `var`.
- **ms** (Parameter) - Mean square gradients. Must have the same shape and dtype as `var`.
- **mom** (Parameter) - Delta of `var`. Must have the same shape and dtype as `var`.
- **lr** (Union[Number, Tensor]) - Learning rate. Must be a float number or a scalar tensor.
Must have the same type as `var`.
- **rho** (Union[Number, Tensor]) - Decay rate. Must be a float number or a scalar tensor.
Must have the same type as `var`.
- **momentum** (Union[Number, Tensor]) - Momentum. Must be a float number or a scalar tensor.
Must have the same type as `var`.
- **epsilon** (Union[Number, Tensor]) - Ridge term. Must be a float number or a scalar tensor.
Must have the same type as `var`.
- **grad** (Tensor) - A tensor of the same type as `var` and grad.shape[1:] = var.shape[1:] if var.shape > 1.
- **indices** (Tensor) - Gradient indices. Must be one of the following types: int32, int64.
and indices.shape[0] = grad.shape[0].
Outputs:
- **var** (Tensor) - Tensor, has the same shape and data type as `var`.
Raises:
TypeError: If `use_locking` is not a bool.
TypeError: If `var`, `mg`, `ms`, `mom`, `grad`, `indices` is not a Tensor.
TypeError: If `lr`, `rho`, `momentum` or `epsilon` is neither a Number nor a Tensor.
TypeError: If dtype of `var`, `mg`, `ms`, `mom`, `lr`, `rho`, `momentum`, `epsilon` or `grad`
is neither float16 nor float32.
TypeError: If dtype of `mg`, `ms`, `mom`, `grad` is not same as `var`.
TypeError: If dtype of `indices` is not int32 or int64.
ValueError: If shape of `mg`, `ms` or `mom` is not same as `var`.
ValueError: If the rank of `indices` is not equal to 1.
ValueError: If dimension of `grad` is not equal or greater than 1.
ValueError: If shape of `indices` is not same as shape of first dimension of `grad`.
ValueError: If shape of `grad` is not same as shape of `var` except first dimension.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> import mindspore.common.dtype as mstype
>>> import mindspore.ops.operations.nn_ops as nn_ops
>>> var = Tensor(np.array([[0.6, 0.4], [0.1, 0.5]]).astype(np.float32))
>>> mg = Tensor(np.array([[0.1, 0.3], [0.1, 0.5]]).astype(np.float32))
>>> ms = Tensor(np.array([[0.2, 0.1], [0.1, 0.2]]).astype(np.float32))
>>> mom = Tensor(np.array([[0.2, 0.1], [0.1, 0.2]]).astype(np.float32))
>>> lr = Tensor(0.001, mstype.float32)
>>> rho = Tensor(1e-10, mstype.float32)
>>> momentum = Tensor(0.001, mstype.float32)
>>> epsilon = Tensor(0.01, mstype.float32)
>>> grad = Tensor(np.array([[0.3, 0.4], [0.1, 0.2]]).astype(np.float32))
>>> indices = Tensor(np.array([0, 1]).astype(np.int32))
>>> sparse_apply_centered_rms_prop = nn_ops.SparseApplyCenteredRMSProp()
>>> output = sparse_apply_centered_rms_prop(var, mg, ms, mom, lr, rho, momentum, epsilon, grad, indices)
>>> print(output)
[[0.5968 0.3959]
[0.0989 0.4978]]
"""
__mindspore_signature__ = (
sig.make_sig('var', dtype=sig.sig_dtype.T),
sig.make_sig('mg', dtype=sig.sig_dtype.T),
sig.make_sig('ms', dtype=sig.sig_dtype.T),
sig.make_sig('mom', dtype=sig.sig_dtype.T),
sig.make_sig('lr', dtype=sig.sig_dtype.T),
sig.make_sig('rho', dtype=sig.sig_dtype.T),
sig.make_sig('momentum', dtype=sig.sig_dtype.T),
sig.make_sig('epsilon', dtype=sig.sig_dtype.T),
sig.make_sig('grad', dtype=sig.sig_dtype.T),
sig.make_sig('indices', dtype=sig.sig_dtype.T1)
)
@prim_attr_register
def __init__(self, use_locking=False):
"""Initialize SparseApplyCenteredRMSProp."""
self.init_prim_io_names(inputs=['var', 'mg', 'ms', 'mom', 'lr', 'rho', 'momentum',
'epsilon', 'grad', 'indices'],
outputs=['var'])
validator.check_value_type("use_locking", use_locking, [bool], self.name)
class ApplyKerasMomentum(Primitive):
r"""
Update `var` according to the momentum scheme.
.. math::
\begin{array}{ll} \\
accum = accum * momentum - grad * lr \\
var =
\begin{cases}
var + accum * momentum - grad * lr, &\text{if use_nesterov} \\
var + accum, &\text{else}
\end{cases}
\end{array}
Refer to the paper `On the importance of initialization and momentum in deep
learning <https://dl.acm.org/doi/10.5555/3042817.3043064>`_ for more details.
Inputs of `var`, `accum` and `grad` comply with the implicit type conversion rules
to make the data types consistent.
If they have different data types, the lower priority data type will be converted to
relatively highest priority data type.
RuntimeError exception will be thrown when the data type conversion of Parameter is required.
Args:
use_locking (bool): If `True`, updating of the `var` and `accum` tensors will be protected by a lock;
Otherwise the behavior is undefined, but may exhibit less contention. Default: False.
use_nesterov (bool): If `True`, the tensor passed to compute grad will be var + momentum * accum,
so in the end, the var you get is actually var + momentum * accum. Default: False.
Inputs:
- **var** (Parameter) - Variable to be updated. With float16 or float32 data type.
- **accum** (Parameter) - Must have the same shape and type as `var`. With float16 or float32 data type.
- **lr** (Union[Number, Tensor]) - Scaling factor. Must be a scalar. With float16 or float32 data type.
- **grad** (Tensor) - The gradient. Must have the same shape and type as `var`.
With float16 or float32 data type.
- **momentum** (Union[Number, Tensor]) - Momentum. Must be a scalar. With float16 or float32 data type.
Outputs:
Tuple of 2 Tensors, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
Raises:
TypeError: If the use_locking or use_nesterov is not a bool.
TypeError: If `var` or `accum` is not a Parameter.
TypeError: If `lr` is neither a Number nor a Tensor.
TypeError: If `grad` is not a Tensor.
TypeError: If `momentum` is neither a Number nor a Tensor.
TypeError: If dtype of `var`, `accum`, `lr`, `grad`, `momentum` is neither float16 nor float32.
ValueError: If `accum` or `grad` doesn't have the same shape as `var`.
ValueError: If the shape size of `lr`, `momentum` is not 0.
Supported Platforms:
``Ascend``
Examples:
>>> class ApplyKerasMomentumNet(nn.Cell):
... def __init__(self, use_locking=False, use_nesterov=False):
... super(ApplyKerasMomentumNet, self).__init__()
... self.apply_keras_momentum = P.ApplyKerasMomentum(use_locking, use_nesterov)
... self.var = Parameter(Tensor(np.array([[0.2, 0.3], [0.1, 0.4]]).astype(np.float32)), name="var")
... self.accum = Parameter(Tensor(np.array([[0.2, 0.3], [0.1, 0.4]]).astype(np.float32)), name="accum")
... def construct(self, lr, grad, momentum):
... out = self.apply_keras_momentum(self.var, self.accum, lr, grad, momentum)
... return out
...
>>> net = ApplyKerasMomentumNet()
>>> lr = Tensor(0.001, mstype.float32)
>>> grad = Tensor(np.array([[0.3, 0.2], [0.4, 0.1]]).astype(np.float32))
>>> momentum = Tensor(0.99, mstype.float32)
>>> output = net(lr, grad, momentum)
>>> print(output)
(Tensor(shape=[2, 2], dtype=Float32, value=
[[ 3.97700012e-01, 5.96800029e-01],
[ 1.98599994e-01, 7.95899987e-01]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 1.97699994e-01, 2.96800017e-01],
[ 9.86000001e-02, 3.95900011e-01]]))
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('lr', dtype=sig.sig_dtype.T1),
sig.make_sig('grad', dtype=sig.sig_dtype.T),
sig.make_sig('momentum', dtype=sig.sig_dtype.T2)
)
@prim_attr_register
def __init__(self, use_locking=False, use_nesterov=False):
"""Initialize ApplyKerasMomentum"""
validator.check_value_type("use_locking", use_locking, [bool], self.name)
validator.check_value_type("use_nesterov", use_nesterov, [bool], self.name)
class ApplyAdamWithAmsgrad(Primitive):
r"""
Update var according to the Adam algorithm.
.. math::
\begin{array}{l1} \\
lr_t:=learning\_rate*\sqrt{1-\beta_2^t}/(1-\beta_1^t) \\
m_t:=\beta_1*m_{t-1}+(1-\beta_1)*g \\
v_t:=\beta_2*v_{t-1}+(1-\beta_2)*g*g \\
\hat v_t:=max(\hat v_{t-1}, v_t) \\
var:=var-lr_t*m_t/(\sqrt{\hat v_t}+\epsilon) \\
\end{array}
Args:
beta1 (float): A Tensor. Must have the same type as beta1_power. Momentum factor. Must be a scalar.
beta2 (float): A Tensor. Must have the same type as beta1_power. Momentum factor. Must be a scalar.
epsilon (float): A Tensor. Must have the same type as beta1_power. Ridge term. Must be a scalar.
use_locking (bool): use_locking: If True , updating of the `var`, `m`, and `v` tensors will
be protected by a lock; Otherwise the behavior is undefined, but may exhibit less contention.
Default: False.
Inputs:
- **var** (Parameter) - Variable to be updated. The data type can be float16 or float32.
- **m** (Parameter) - The 1st moment vector in the updating formula,
the shape and data type value should be the same as `var`.
- **v** (Parameter) - the 2nd moment vector in the updating formula,
the shape and data type value should be the same as `var`.
- **vhat** (Parameter) - :math:`\hat v_t` in the updating formula,
the shape and data type value should be the same as `var`.
- **beta1_power** (Union[float, Tensor]) - :math:`beta_1^t(\beta_1^{t})` in the updating formula,
a scalar tensor with float16 or float32 data type.
- **beta2_power** (Union[float, Tensor]) - :math:`beta_2^t(\beta_2^{t})` in the updating formula,
a scalar tensor with float16 or float32 data type.
- **lr** (Union[float, Tensor]) - Scaling factor, a scalar tensor with float16 or float32 data type.
- **grad** (Tensor) - The gradient, has the same shape and data type as `var`.
Outputs:
Tuple of 4 Tensors, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **m** (Tensor) - The same shape and data type as `m`.
- **v** (Tensor) - The same shape and data type as `v`.
- **vhat** (Tensor) - The same shape and data type as `vhat`.
Raises:
TypeError: If `var`, `m`, `v`, `vhat` is not a Parameter.
TypeError: If `beta1_power`, `beta2_power`, `lr` is neither a Number nor a Tensor.
TypeError: If `grad` is not a Tensor.
TypeError: If dtype of `var`, `m`, `v`, `vhat`, `beta1_power`, `beta2_power`,
`lr`, `grad`, `momentum` is not float32 or float16.
ValueError: If `m` or `v` or `vhat` or `grad` doesn't have the same shape of `var`.
ValueError: If the shape of `beta1_power`, `beta2_power`, `lr` is not 0.
Supported Platforms:
``Ascend`` ``CPU`` ``GPU``
Examples:
>>> class ApplyAdamWithAmsgradNet(nn.Cell):
... def __init__(self, beta1=0.9, beta2=0.999, epsilon=1e-8, use_locking=False):
... super(ApplyAdamWithAmsgradNet, self).__init__()
... self.apply_adam_with_amsgrad = P.ApplyAdamWithAmsgrad(beta1, beta2, epsilon, use_locking)
... self.var = Parameter(Tensor(np.array([[0.2, 0.2], [0.2, 0.2]]).astype(np.float32)), name="var")
... self.m = Parameter(Tensor(np.array([[0.1, 0.2], [0.4, 0.3]]).astype(np.float32)), name="m")
... self.v = Parameter(Tensor(np.array([[0.2, 0.1], [0.3, 0.4]]).astype(np.float32)), name="v")
... self.vhat = Parameter(Tensor(np.array([[0.1, 0.2], [0.6, 0.2]]).astype(np.float32)), name="vhat")
... def construct(self, beta1_power, beta2_power, lr, grad):
... out = self.apply_adam_with_amsgrad(self.var, self.m, self.v, self.vhat,
... beta1_power, beta2_power, lr, grad)
... return out
>>> net = ApplyAdamWithAmsgradNet()
>>> grad = Tensor(np.array([[0.4, 0.2], [0.2, 0.3]]).astype(np.float32))
>>> output = net(Tensor(0.9, mstype.float32), Tensor(0.999, mstype.float32), Tensor(0.01, mstype.float32), grad)
>>> print(net.var.asnumpy())
[[0.19908068 0.1985858 ]
[0.19844866 0.19849943]]
"""
__mindspore_signature__ = (
sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('m', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('v', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('vhat', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
sig.make_sig('beta1_power', dtype=sig.sig_dtype.T1),
sig.make_sig('beta2_power', dtype=sig.sig_dtype.T2),
sig.make_sig('lr', dtype=sig.sig_dtype.T3),
sig.make_sig('grad', dtype=sig.sig_dtype.T)
)
@prim_attr_register
def __init__(self, beta1=0.9, beta2=0.999, epsilon=1e-8, use_locking=False):
"""Initialize ApplyAdamWithAmsgrad"""
validator.check_value_type("beta1", beta1, [float], self.name)
validator.check_value_type("beta2", beta2, [float], self.name)
validator.check_value_type("epsilon", epsilon, [float], self.name)
validator.check_value_type("use_locking", use_locking, [bool], self.name)
self.add_prim_attr("side_effect_mem", True)
class GridSampler3D(Primitive):
"""
Given an `input_x` and a flow-field `grid`, computes the `output` using `input_x` values and pixel locations from
`grid`. Only volumetric (5-D) `input_x` is supported.
For `input_x` with shape :math:`(N, C, D_{in}, H_{in}, W_{in})` and `grid` with shape :math:`(N, D_{out}, H_{out},
W_{out}, 3)`, the `output` will have shape :math:`(N, C, D_{out}, H_{out}, W_{out})`.
For each output location `output[n, :, d, h, w]`, the size-3 vector `grid[n, d, h, w]` specifies `input_x` pixel
locations x, y, z, which are used to interpolate the output value `output[n, :, d, h, w]`. And `interpolation_mode`
argument specifies "nearest" or "bilinear" interpolation method to sample the input pixels.
`grid` specifies the sampling pixel locations normalized by the `input_x` spatial dimensions. Therefore, it should
have most values in the range of :math:`[-1, 1]`.
If `grid` has values outside the range of :math:`[-1, 1]`, the corresponding outputs are handled as defined by
`padding_mode`. If `padding_mode` is set to be "zeros", use :math:`0` for out-of-bound grid locations. If
`padding_mode` is set to be "border", use border values for out-of-bound grid locations. If `padding_mode` is set
to be "reflection", use values at locations reflected by the border for out-of-bound grid locations. For location
far away from the border, it will keep being reflected until becoming in bound.
Args:
interpolation_mode (str): An optional string specifying the interpolation method. The optional values are
"bilinear" or "nearest". Default: "bilinear".
padding_mode (str): An optional string specifying the pad method. The optional values are "zeros", "border" or
"reflection". Default: "zeros".
align_corners (bool): An optional bool. If set to `True`, the extrema (-1 and 1) are considered as referring to
the center points of the input’s corner pixels. If set to `False`, they are instead considered as referring
to the corner points of the input’s corner pixels, making the sampling more resolution agnostic. Default:
`False`.
Inputs:
- **input_x** (Tensor) - A 5-D tensor with dtype of float32 or float64 and shape of :math:`(N, C, D_{in},
H_{in}, W_{in})`.
- **grid** (Tensor) - A 5-D tensor whose dtype is the same as `input_x` and whose shape is :math:`(N, D_{out},
H_{out}, W_{out}, 3)`.
Outputs:
A 5-D Tensor whose dtype is the same as `input_x` and whose shape is :math:`(N, C, D_{out}, H_{out}, W_{out})`.
Raises:
TypeError: If `input_x` or `grid` is not a Tensor.
TypeError: If the dtypes of `input_x` and `grid` are inconsistent.
TypeError: If the dtype of `input_x` or `grid` is not a valid type.
TypeError: If `align_corners` is not a boolean value.
ValueError: If the rank of `input_x` or `grid` is not equal to 5.
ValueError: If the first dimension of `input_x` is not equal to that of `grid`.
ValueError: If the last dimension of `grid` is not equal to 3.
ValueError: If `interpolation_mode` is not "bilinear", "nearest" or a string value.
ValueError: If `padding_mode` is not "zeros", "border", "reflection" or a string value.
Supported Platforms:
``CPU`` ``GPU``
Examples:
>>> gridsampler = GridSampler3D(interpolation_mode='bilinear', padding_mode='zeros', align_corners=True)
>>> input_x = Tensor(np.arange(32).reshape((2, 2, 2, 2, 2)).astype(np.float32))
>>> grid = Tensor(np.arange(-0.2, 1, 0.1).reshape((2, 2, 1, 1, 3)).astype(np.float32))
>>> output = gridsampler(input_x, grid)
>>> print(output)
[[[[[ 3.3 ]]
[[ 4.35 ]]]
[[[11.300001]]
[[12.349999]]]]
[[[[21.4 ]]
[[22.449999]]]
[[[29.4 ]]
[[30.449999]]]]]
"""
@prim_attr_register
def __init__(self, interpolation_mode='bilinear', padding_mode='zeros', align_corners=False):
"""Initialize GridSampler3D."""
validator.check_string(interpolation_mode, ['bilinear', 'nearest'], 'interpolation_mode', self.name)
validator.check_string(padding_mode, ['zeros', 'border', 'reflection'], 'padding_mode', self.name)
validator.check_bool(align_corners, 'align_corners', self.name)
self.init_prim_io_names(inputs=['input_x', 'grid'], outputs=['output'])
self.add_prim_attr('interpolation_mode', interpolation_mode)
self.add_prim_attr('padding_mode', padding_mode)
self.add_prim_attr('align_corners', align_corners)
class FractionalMaxPool(Primitive):
r"""
Performs fractional max pooling on the input.
Fractional max pooling is similar to regular max pooling, In regular max pooling, you downsize an
input set by taking the maximum value of smaller N x N subsections of the set (often 2x2), and try
to reduce the set by a factor of N, where N is an integer. Fractional max pooling, means that the
overall reduction ratio N does not have to be an integer.
The sizes of the pooling regions are generated randomly but are fairly uniform.
.. warning::
"pooling_ratio", currently only supports row and col dimension and should be >= 1.0, the first
and last elements must be 1.0 because we don't allow pooling on batch and channels dimensions.
Args:
pooling_ratio (list(float)): Decide the shape of output, is a list of floats that has length >= 4.
Pooling ratio for each dimension of value should be >=0, currently only support for row and col
dimension. The first and last elements must be 1.0 because we don't allow pooling on batch and
channels dimensions.
pseudo_random(bool): An optional bool. Defaults to False. When set to True, generates the pooling
sequence in a pseudo random fashion, otherwise, in a random fashion.
Check paper Benjamin Graham, Fractional Max-Pooling for difference between pseudo_random and
random.
overlapping(bool): An optional bool. Defaults to False. When set to True, it means when pooling,
the values at the boundary of adjacent pooling cells are used by both cells.
deterministic(bool): An optional bool. Defaults to False. When set to True, a fixed pooling region
will be used when iterating over a FractionalMaxPool node in the computation graph. Mainly
used in unit test to make FractionalMaxPool deterministic.
seed(int): An optional int. Defaults to 0. If either seed or seed2 are set to be non-zero, the
random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed.
seed2(int): An optional int. Defaults to 0. An second seed to avoid seed collision.
Inputs:
- **x** (Tensor) -The data type must be one of the following types: float32, float64, int32, int64.
Tensor of shape :math:`(N, H_{in}, W_{in}, C_{in})`.
Outputs:
- **y** (Tensor) - the output of FractionalMaxPool, has the same data type with `x`.
Tensor of shape :math:`(N, H_{out}, W_{out}, C_{out})`.
- **row_pooling_sequence** (Tensor) - A tensor of type int64, the result list of pool boundary rows.
- **col_pooling_sequence** (Tensor) - A tensor of type int64, the result list of pool boundary cols.
Raises:
TypeError: If data type of `x` is not float32, float64, int32, int64.
TypeError: If `x` is not a 4D tensor.
ValueError: If element of `x` equals 0 or is less than 0.
ValueError: If `pooling_ratio` is a list whose length is not equal to 4.
ValueError: If the first and last element of `pooling_ratio` is not equal to 1.0.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> x = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]).reshape([1,4,4,1]).astype(np.int64)
>>> pooling_ratio=[1.0,1.5,1.5,1.0]
>>> fractionalmaxpool_op = ops.FractionalMaxPool(pooling_ratio=pooling_ratio)
>>> output = fractionalmaxpool_op(Tensor(x))
>>> print(output)
(Tensor(shape=[1, 2, 2, 1], dtype=Int64, value=
[[[[ 6],
[ 8]],
[[14],
[16]]]]), Tensor(shape=[3], dtype=Int64, value= [0, 2, 4]), Tensor(shape=[3], dtype=Int64, value= [0, 2, 4]))
"""
@prim_attr_register
def __init__(self, pooling_ratio, pseudo_random=False, overlapping=False, deterministic=False, seed=0, seed2=0):
"""Initialize FractionalMaxPool."""
self.init_prim_io_names(inputs=["x"], outputs=["y", "row_pooling_sequence", "col_pooling_sequence"])
validator.check_value_type('pooling_ratio', pooling_ratio, [list], self.name)
for item in pooling_ratio:
validator.check_value_type("pooling_ratio_item", item, float, self.name)
validator.check_value_type("pseudo_random", pseudo_random, [bool], self.name)
validator.check_value_type("overlapping", overlapping, [bool], self.name)
validator.check_value_type("deterministic", deterministic, [bool], self.name)
validator.check_value_type("seed", seed, [int], self.name)
validator.check_value_type("seed2", seed2, [int], self.name)
class FractionalMaxPool3DWithFixedKsize(Primitive):
r"""
3D fractional max pooling operation.
This operator applies a 3D fractional max pooling over an input signal composed of several input planes.
The max-pooling operation is applied in kD x kH x kW regions by a stochastic step size determined
by the target output size.
The number of output features is equal to the number of input planes.
Refer to the paper `Fractional MaxPooling by Ben Graham <https://arxiv.org/abs/1412.6071>`_ for more details.
The input and output data format can be "NCDHW" and "NDHWC". N is the batch size, C is the number of channels,
D the feature depth, H is the feature height, and W is the feature width.
Args:
ksize (Union[float, tuple]): The target ksize is D x H x W.
ksize can be a tuple, or a single K for K x K x K.
specifying the window size (D, H, W) of the input tensor.
output_shape (Union[int, tuple]): The target output_shape is D x H x W.
output_shape can be a tuple, or a single H for H x H x H.
specifying the size (D, H, W) of the output tensor.
data_format (str) : The optional value for data format.
Currently support 'NCDHW' and 'NHDWC'. Default: 'NCDHW'.
Inputs:
- **x** (Tensor) - The input of FractionalMaxPool3DWithFixedKsize, which is a 4D or 5D tensor.
Tensor of data type : float16, float32, double, int32, int64.
Supported shape :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(N, D_{in}, H_{in}, W_{in}, C)`.
- **random_samples** (Tensor) - The random step of FractionalMaxPool3DWithFixedKsize, which is a 3D tensor.
Tensor of data type : float16, float32, double, and value is between (0, 1).
Supported shape :math:`(N, C, 3)`
Outputs:
Outputs:
- **y** (Tensor) - A tensor, the output of FractionalMaxPool3DWithFixedKsize.
Has the same data type with `x`.
Tensor of shape :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(N, D_{out}, H_{out}, W_{out}, C)`.
- **argmax** (Tensor) - A tensor, the indices along with the outputs.
Has the same shape as the `y` and int32 or int64 data type.
Raises:
TypeError: If `input_x` is not a 4D or 5D tensor.
TypeError: If `random_samples` is not a 3D tensor.
TypeError: If data type of `x` is not float16, float32, double, int32, int64.
TypeError: If dtype of `random_samples` is not float16, float32, double.
TypeError: If dtype of `argmax` is not int32, int64.
ValueError: If `output_shape` is a tuple and if `output_shape` length is not 3.
ValueError: If `ksize` is a tuple and if `ksize` length is not 3.
ValueError: If numbers in `output_shape` or `ksize` is not positive.
ValueError: If `data_format` is neither 'NCDHW' nor 'NDHWC'.
ValueError: If the first dimension size of `input_x` and `random_samples` is not equal.
ValueError: If the second dimension size of `input_x` and `random_samples` is not equal.
ValueError: If the third dimension size of `random_samples` is not 3.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> x = Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])
... .reshape([1, 1, 2, 2, 4]), mstype.float32)
>>> random_samples = Tensor(np.array([0.7, 0.7, 0.7]).reshape([1, 1, 3]), mstype.float32)
>>> ksize = (1.0, 1.0, 1.0)
>>> output_shape = (1, 1, 2)
>>> net = ops.FractionalMaxPool3DWithFixedKsize(ksize = ksize, output_shape = output_shape)
>>> output, argmax = net(x, random_samples)
>>> print(output)
>>> print(argmax)
[[[[[13. 16.]]]]]
[[[[[12 15]]]]]
"""
@prim_attr_register
def __init__(self, ksize, output_shape, data_format="NCDHW"):
"""Initialize FractionalMaxPool3DWithFixedKsize."""
self.init_prim_io_names(inputs=["x", "random_samples"], outputs=["y", "argmax"])
validator.check_value_type("ksize", ksize, [float, tuple], self.name)
self.ksize = ksize
if isinstance(self.ksize, float):
self.ksize = (ksize, ksize, ksize)
if len(self.ksize) != 3:
raise ValueError(f"For '{self.name}', attr 'ksize' must be an positive float number or a tuple of "
f"three float numbers, but got {len(self.ksize)} numbers.")
for item in self.ksize:
validator.check_positive_float(item, 'ksize item', self.name)
self.output_shape = validator.check_value_type("output_shape", output_shape, [int, tuple], self.name)
self.data_format = validator.check_string(data_format, ['NCDHW', 'NDHWC'], 'data_format', self.name)
self.output_shape = _check_3d_int_or_tuple("output_shape", output_shape,
self.name, allow_five=False, ret_five=False)
self.add_prim_attr("ksize", self.ksize)
self.add_prim_attr("output_shape", self.output_shape)
class FractionalAvgPool(Primitive):
r"""
Performs fractional avg pooling on the input.
Fractional avg pooling is similar to regular avg pooling, In regular avg pooling, you downsize an
input set by taking the avgrage value of smaller N x N subsections of the set (often 2x2), and try
to reduce the set by a factor of N, where N is an integer. Fractional avg pooling, means that the
overall reduction ratio N does not have to be an integer. In each pooling region, a mean operation
is performed.
.. warning::
"pooling_ratio", currently only supports row and col dimension and should be >= 1.0, the first
and last elements must be 1.0 because we don't allow pooling on batch and channels dimensions.
Args:
pooling_ratio (list(float)): Decide the shape of output, is a list of floats that has length >= 4.
Pooling ratio for each dimension of value should be >=0, currently only support for row and col
dimension. The first and last elements must be 1.0 because we don't allow pooling on batch and
channels dimensions.
pseudo_random(bool): An optional bool. Defaults to False. When set to True, generates the pooling
sequence in a pseudorandom fashion, otherwise, in a random fashion.
Check paper Benjamin Graham, Fractional Max-Pooling for difference between pseudo_random and
random.
overlapping(bool): An optional bool. Defaults to False. When set to True, it means when pooling,
the values at the boundary of adjacent pooling cells are used by both cells.
deterministic(bool): An optional bool. Defaults to False. When set to True, a fixed pooling region
will be used when iterating over a FractionalAvgPool node in the computation graph. Mainly
used in unit test to make FractionalAvgPool deterministic.
seed(int): An optional int. Defaults to 0. If either seed or seed2 are set to be non-zero, the
random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed.
seed2(int): An optional int. Defaults to 0. An second seed to avoid seed collision.
Inputs:
- **x** (Tensor) -The data type must be one of the following types: float32, float64, int32, int64.
Tensor of shape :math:`(N, H_{in}, W_{in}, C_{in})`.
Outputs:
- **y** (Tensor) - A tensor, the output of FractionalAvgPool, has the same data type with `x`.
Tensor of shape :math:`(N, H_{out}, W_{out}, C_{out})`.
- **row_pooling_sequence** (Tensor) - A tensor of type int64, the result list of pool boundary rows.
- **col_pooling_sequence** (Tensor) - A tensor of type int64, the result list of pool boundary cols.
Raises:
TypeError: If data type of `x` is not float32, float64, int32, int64.
TypeError: If `x` is not a 4D tensor.
ValueError: If element of `x` equals 0 or is less than 0.
ValueError: If `pooling_ratio` is a list whose length is not equal to 4.
ValueError: If the first and last element of `pooling_ratio` is not equal to 1.0.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> x = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]).reshape([1,4,4,1]).astype(np.int64)
>>> pooling_ratio=[1.0,1.5,1.5,1.0]
>>> fractionalavgpool_op = ops.FractionalAvgPool(pooling_ratio=pooling_ratio)
>>> output = fractionalavgpool_op(Tensor(x))
>>> print(output)
(Tensor(shape=[1, 2, 2, 1], dtype=Int64, value=
[[[[ 3],
[ 5]],
[[11],
[13]]]]), Tensor(shape=[3], dtype=Int64, value= [0, 2, 4]), Tensor(shape=[3], dtype=Int64, value= [0, 2, 4]))
"""
@prim_attr_register
def __init__(self, pooling_ratio, pseudo_random=False, overlapping=False, deterministic=False, seed=0, seed2=0):
"""Initialize FractionalAvgPool."""
self.init_prim_io_names(inputs=["x"], outputs=["y", "row_pooling_sequence", "col_pooling_sequence"])
validator.check_value_type('pooling_ratio', pooling_ratio, [list], self.name)
for item in pooling_ratio:
validator.check_value_type("pooling_ratio_item", item, float, self.name)
validator.check_value_type("pseudo_random", pseudo_random, [bool], self.name)
validator.check_value_type("overlapping", overlapping, [bool], self.name)
validator.check_value_type("deterministic", deterministic, [bool], self.name)
validator.check_value_type("seed", seed, [int], self.name)
validator.check_value_type("seed2", seed2, [int], self.name)
class NthElement(Primitive):
r"""
Finds values of the n-th order statistic for the last dimension.
If the input is a vector (rank-1), finds the entries which is the nth-smallest value in
the vector and outputs their values as scalar tensor.
For matrices (resp. higher rank input), computes the entries which is the nth-smallest value in
each row (resp. vector along the last dimension). Thus, values.shape = input.shape[:-1].
Args:
reverse (bool): An optional bool. Defaults to False. When set to True, find the nth-largest value
in the vector and vice versa.
Inputs:
- **input** (Tensor) - A Tensor. 1-D or higher with last dimension at least n+1.
- **n** (int or Tensor) - If the n is a tensor, it should be a 0-D tensor, dtype is int32.
Valid range of n is [0, input.shape[-1]).
Outputs:
Tensor, values.shape = input.shape[:-1]. The dtype is same to the input.
Raises:
TypeError: If the type of input is out of the valid list.
TypeError: If the n is not int32 or not a Tensor.
ValueError: If n is out of [0, input.shape[-1]).
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> input = Tensor(np.array([[1,2,3],[4,5,6]]) , mstype.int8)
>>> n = 1
>>> net = P.NthElement()
>>> out = net(input, n)
>>> print(out)
[2 5]
"""
@prim_attr_register
def __init__(self, reverse=False):
"""Initialize NthElement."""
self.reverse = validator.check_value_type("reverse", reverse, [bool], self.name)
self.add_prim_attr("reverse", self.reverse)
self.init_prim_io_names(inputs=['input', 'n'],
outputs=['output'])
class PSROIPooling(Primitive):
r"""
Position Sensitive ROI-Pooling
Args:
spatial_scale (float): a scaling factor that maps the box coordinates to the input coordinates.
For example, if your boxes are defined on the scale of a 224x224 image and
your input is a 112x112 feature map (resulting from a 0.5x scaling of the original
image), you’ll want to set this to 0.5.
group_size (int): the size of the output (in pixels) after the pooling is performed, as (height, width).
output_dim (int): the dim of the output after the pooling is performed.
Inputs:
- **features** (Tensor) - The input features, whose shape must be :math:`(N, C, H, W)`. With data type is
float16 or float32. This formula should hold: :math:`(C == output_dim * group_size * group_size)`.
- **rois** (Tensor) - The shape is `(batch, 5, rois_n)`. With data type of float16 or float32.
The size of first dimension `batch` is batch_size. The size of the second dimension must be `5`.
The size of third dimension `rois_n` is the number of rois. The value of `rois` like:
(index, x1, y1, x2, y2). The first element of `rois_n` is the index of the `rois`. And the box coordinates
in (x1, y1, x2, y2) format where the regions will be taken from. The coordinate must satisfy
0 <= x1 < x2 and 0 <= y1 < y2.
Outputs:
- out (rois.shape[0] * rois.shape[2], output_dim, group_size, group_size), the result after pooling.
Supported Platforms:
``Ascend``
Examples:
>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore.ops.operations import nn_ops
>>> features = np.random.randn(4, 3 * 7 * 7, 80, 48)
>>> features = Tensor.from_numpy(features).astype(mindspore.float32)
>>> rois = Tensor.from_numpy(
... np.array([[[0.0000],
... [150.3563],
... [200.1320],
... [579.3563],
... [602.3452]],
... [[1.0000],
... [657.1263],
... [302.8564],
... [762.4214],
... [567.9854]],
... [[2.0000],
... [321.3122],
... [232.2410],
... [679.0281],
... [587.6346]],
... [[3.0000],
... [664.1630],
... [387.4919],
... [778.7322],
... [562.7321]]])).astype(mindspore.float32)
>>> psROIPooling = nn_ops.PSROIPooling(spatial_scale=1.0/16, output_dim=3,
... group_size=7)
>>> out = psROIPooling(features, rois)
>>> print(out.shape)
(4, 3, 7, 7)
>>> print(out.dtype)
Float32
"""
@prim_attr_register
def __init__(self, spatial_scale, group_size, output_dim):
"""Initialize PSROIPooling"""
validator.check_value_type("spatial_scale", spatial_scale, [float], self.name)
validator.check_value_type("group_size", group_size, [int], self.name)
validator.check_value_type("output_dim", output_dim, [int], self.name)
self.spatial_scale = spatial_scale
self.group_size = group_size
self.output_dim = output_dim
self.add_prim_attr('spatial_scale', self.spatial_scale)
self.add_prim_attr('group_size', self.group_size)
self.add_prim_attr('output_dim', self.output_dim)
class DeformableOffsets(Primitive):
r"""
Computes the deformed convolution output with the expected input.
Refer to :func:`mindspore.ops.deformable_conv2d` for more detail.
Supported Platforms:
``Ascend`` ``CPU`` ``GPU``
"""
@prim_attr_register
def __init__(self,
strides,
pads,
ksize,
dilations=(1, 1, 1, 1),
data_format="NCHW",
deformable_groups=1,
modulated=True):
"""Initialize DeformableOffsets"""
self.init_prim_io_names(inputs=['x', 'offsets'], outputs=['y'])
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'data_format', self.name)
pos_c = 1
if self.format == "NHWC":
pos_c = 3
self.add_prim_attr('format', self.format)
validator.check_size_and_element_type_of_tuple('strides', strides, 4, int, self.name)
if strides[0] != 1 or strides[pos_c] != 1:
raise ValueError(f"For '{self.name}', The N and C dimensions of 'strides' must be set to 1.")
self.add_prim_attr('strides', strides)
validator.check_size_and_element_type_of_tuple('pads', pads, 4, int, self.name)
self.add_prim_attr('pads', pads)
validator.check_size_and_element_type_of_tuple('kernel_size', ksize, 2, int, self.name)
self.add_prim_attr('ksize', ksize)
validator.check_size_and_element_type_of_tuple('dilations', dilations, 4, int, self.name)
if dilations[0] != 1 or dilations[pos_c] != 1:
raise ValueError(f"For '{self.name}', The N and C dimensions of 'dilations' must be set to 1.")
self.add_prim_attr('dilations', dilations)
self.deformable_groups = validator.check_positive_int(deformable_groups, 'deformable_groups', self.name)
self.add_prim_attr('deformable_groups', self.deformable_groups)
self.modulated = validator.check_bool(modulated, 'modulated', self.name)
if self.modulated is not True:
raise ValueError(f"For '{self.name}', The modulated must be set to True.")
self.add_prim_attr('modulated', self.modulated)
class GridSampler2D(Primitive):
"""
This operation samples 2d input_x by using interpolation based on flow field grid, which is usually gennerated by
affine_grid.
Args:
interpolation_mode (str): An optional string specifying the interpolation method. The optional values are
"bilinear" or "nearest". Default: "bilinear".
padding_mode (str): An optional string specifying the pad method. The optional values are "zeros", "border" or
"reflection". Default: "zeros".
align_corners (bool): An optional bool. If "true", the centers of the corner pixels of the input and output
tensors are aligned. Defaults to "false".
Inputs:
- **input_x** (Tensor) - A 4-D tensor with dtype of float16 or float32 and shape of :math:`(N, C,
H_{in}, W_{in})`.
- **grid** (Tensor) - A 4-D tensor whose dtype is the same as `input_x` and whose shape is :math:`(N,
H_{out}, W_{out}, 2)`. Used to specify the sampling pixel locations normalized by the input spatial
dimensions.
Outputs:
A 4-D Tensor whose dtype is the same as `input_x` and whose shape is :math:`(N, C, H_{out}, W_{out})`.
Raises:
TypeError: If `input_x` or `grid` is not a Tensor.
TypeError: If the dtypes of `input_x` and `grid` are inconsistent.
TypeError: If the dtype of `input_x` or `grid` is not a valid type.
TypeError: If `align_corners` is not a boolean value.
ValueError: If the rank of `input_x` or `grid` is not equal to 4.
ValueError: If the first dimension of `input_x` is not equal to that of `grid`.
ValueError: If the forth dimension of `grid` is not equal to 2.
ValueError: If `interpolation_mode` is not "bilinear", "nearest" or a string value.
ValueError: If `padding_mode` is not "zeros", "border", "reflection" or a string value.
Supported Platforms:
``Ascend`` ``CPU`` ``GPU``
Examples:
>>> gridsampler = GridSampler2D(interpolation_mode='bilinear', padding_mode='zeros', align_corners=True)
>>> input_x = Tensor(np.arange(16).reshape((2, 2, 2, 2)).astype(np.float32))
>>> grid = Tensor(np.arange(-9, 9, 0.5).reshape((2, 3, 3, 2)).astype(np.float32))
>>> output = gridsampler(input_x, grid)
>>> print(output)
[[[[ 0. 0. 0. ]
[ 0. 0. 0. ]
[ 0. 0. 0.5 ]]
[[ 0. 0. 0. ]
[ 0. 0. 0. ]
[ 0. 1.5 4.5 ]]]
[[[10. 8.25 1.375]
[ 0. 0. 0. ]
[ 0. 0. 0. ]]
[[14. 11.25 1.875]
[ 0. 0. 0. ]
[ 0. 0. 0. ]]]]
"""
@prim_attr_register
def __init__(self, interpolation_mode='bilinear', padding_mode='zeros', align_corners=False):
"""Initialize GridSampler2D."""
validator.check_string(interpolation_mode, ['bilinear', 'nearest'], 'interpolation_mode', self.name)
validator.check_string(padding_mode, ['zeros', 'border', 'reflection'], 'padding_mode', self.name)
validator.check_bool(align_corners, 'align_corners', self.name)
self.init_prim_io_names(inputs=['input', 'grid'], outputs=['output'])
self.add_prim_attr('interpolation_mode', interpolation_mode)
self.add_prim_attr('padding_mode', padding_mode)
self.add_prim_attr('align_corners', align_corners)
class Pdist(Primitive):
r"""
Computes the p-norm distance between each pair of row vectors in the input.
Refer to :func:`mindspore.ops.pdist` for more detail.
"""
@prim_attr_register
def __init__(self, p=2.0):
"""Initialize Pdist"""
validator.check_value_type("p", p, [float], self.name)
if p < 0:
raise ValueError('Pdist p must be a non-negative value, but got `{p}`.')
self.init_prim_io_names(inputs=['x'], outputs=['y'])
class UpsampleTrilinear3D(Primitive):
r"""
Performs upsampling with trilinear interpolation across 3dims for 5dim inputs.
This operator scale up the volumetric input with specified `output_size` or `scales` factors,
using trilinear upscaling algorithm.
One of `output_size` or `scales` must be given, and cannot specify both.
Args:
output_size (Union[tuple[int], list[int]]): A list of int specifying the output volumetric size. Default: None.
scales (Union[tuple[float], list[float]]): A list of float specifying the upsampling factors. Default: None.
align_corners (bool): If true, rescale input by :math:`(new\_height - 1) / (height - 1)`,
which exactly aligns the 4 corners of images and resized images. If false,
rescale by :math:`new\_height / height`. Default: False.
Inputs:
- **x** (Tensor) - 5D tensor of shape :math:`(N, C, D_{in}, H_{in}, W_{in})`.
Outputs:
- **y** (Tensor) - Upsampled output with the same data type as `x`.
Tensor of shape :math:`(N, C, D_{out}, H_{out}, W_{out})`.
Raises:
TypeError: If `x` is not a 5D tensor.
TypeError: If data type of `x` is not float16, float32.
TypeError: If data type of `output_size` is not list(int).
TypeError: If data type of `scales` is not list(float).
TypeError: If `align_corners` is not a bool.
ValueError: If `output_size` is a list and if `output_size` length is not 3.
ValueError: If `scales` is a list and if `scales` length is not 3.
ValueError: If both `output_size` and `scales` are None.
ValueError: If both `output_size` and `scales` are non-empty lists.
Supported Platforms:
``GPU``
Examples:
>>> x = Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])
... .reshape([1, 1, 2, 2, 4]), mstype.float32)
>>> output_size = [3, 4, 5]
>>> net = ops.UpsampleTrilinear3D(output_size = output_size)
>>> output = net(x)
>>> print(output)
[[[[[ 1. 1.7 2.5 3.3 4.]
[ 2. 2.7 3.5 4.3 5.]
[ 4. 4.7 5.5 6.3 7.]
[ 5. 5.7 6.5 7.3 8.]]
[[ 5. 5.7 6.5 7.3 8.]
[ 6. 6.7 7.5 8.3 9.]
[ 8. 8.700001 9.5 10.3 11.]
[ 9. 9.700001 10.5 11.3 12.]]
[[ 9. 9.7 10.5 11.3 12.]
[10. 10.7 11.5 12.3 13.]
[12. 12.700001 13.5 14.3 15.]
[13. 13.700001 14.5 15.3 16.]]]]]
"""
@prim_attr_register
def __init__(self, output_size=None, scales=None, align_corners=False):
self.init_prim_io_names(inputs=['x'], outputs=['y'])
if output_size is None:
output_size = []
if scales is None:
scales = []
validator.check_value_type('output_size', output_size, [tuple, list], self.name)
for item in output_size:
validator.check_value_type('output_size_item', item, int, self.name)
validator.check_value_type('scales', scales, [tuple, list], self.name)
for item in scales:
validator.check_value_type('scales_item', item, float, self.name)
validator.check_value_type('align_corners', align_corners, bool, self.name)
self.add_prim_attr('output_size', output_size)
self.add_prim_attr('scales', scales)
self.add_prim_attr('align_corners', align_corners)
class UpsampleNearest3D(Primitive):
r"""
Performs nearest neighbor upsampling operation.
This operator scale up the volumetric input with specified `output_size` or `scales` factors, using nearest
neighbor algorithm.
One of `output_size` or `scales` must be given, and cannot specify both.
Args:
output_size (Union[tuple[int], list[int]]): A tuple or list of int specifying the output volumetric size.
Default: None.
scales (Union[tuple[float], list[float]]): A tuple or list of float specifying the upsampling factors.
Default: None.
Inputs:
- **x** (Tensor) - 5D tensor of shape :math:`(N, C, D_{in}, H_{in}, W_{in})`.
Outputs:
- **y** (Tensor) - Upsampled output with the same data type as `x`.
Tensor of shape :math:`(N, C, D_{out}, H_{out}, W_{out})`.
Raises:
TypeError: If `x` is not a 5D tensor.
TypeError: If data type of `x` is not float16, float32.
TypeError: If data type of `output_size` is not list(int).
TypeError: If data type of `scales` is not list(float).
ValueError: If `output_size` is a list and if `output_size` length is not 3.
ValueError: If `scales` is a list and if `scales` length is not 3.
ValueError: If both `output_size` and `scales` are None.
ValueError: If both `output_size` and `scales` are non-empty lists.
Supported Platforms:
``GPU``
Examples:
>>> x = Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])
... .reshape([1, 1, 2, 2, 4]), mstype.float32)
>>> output_size = [3, 4, 5]
>>> net = ops.UpsampleNearest3D(output_size = output_size)
>>> output = net(x)
>>> print(output)
[[[[[ 1. 1. 2. 3. 4.]
[ 1. 1. 2. 3. 4.]
[ 5. 5. 6. 7. 8.]
[ 5. 5. 6. 7. 8.]]
[[ 1. 1. 2. 3. 4.]
[ 1. 1. 2. 3. 4.]
[ 5. 5. 6. 7. 8.]
[ 5. 5. 6. 7. 8.]]
[[ 9. 9. 10. 11. 12.]
[ 9. 9. 10. 11. 12.]
[13. 13. 14. 15. 16.]
[13. 13. 14. 15. 16.]]]]]
"""
@prim_attr_register
def __init__(self, output_size=None, scales=None):
self.init_prim_io_names(inputs=['x'], outputs=['y'])
if output_size is None:
output_size = []
if scales is None:
scales = []
validator.check_value_type('output_size', output_size, [tuple, list], self.name)
for item in output_size:
validator.check_int(item, 0, Rel.GT, 'output_size_item', self.name)
validator.check_value_type('scales', scales, [tuple, list], self.name)
for item in scales:
validator.check_float(item, 0, Rel.GT, 'scales_item', self.name)
self.add_prim_attr('output_size', output_size)
self.add_prim_attr('scales', scales)
class SparseApplyAdagradDA(Primitive):
r"""
Update `var` according to the proximal adagrad scheme.
.. math::
\begin{array}{ll} \\
grad_accum += grad \\
grad_squared_accum += grad * grad \\
tmp_val=sign(grad_accum) * max\left \{|grad_accum|-l1*global_step, 0\right \}
if l1>0 else grad_accum \\
x_value = -1 * lr * tmp_val \\
y_value = l2 * global_step * lr + \sqrt{grad_squared_accum} \\
var = x_value / y_value
\end{array}
Inputs of `var`, `grad_accum`, `grad_square_accum` and `grad`
comply with the implicit type conversion rules to make the data types consistent.
If they have different data types, lower priority data type will be converted to the
relatively highest priority data type.
Args:
use_locking (bool): If `True`, updating of the `var` and `accum` tensors will be protected by a lock.
Otherwise the behavior is undefined, but may exhibit less contention. Default: False.
Inputs:
- **var** (Parameter) - Variable to be updated. The data type must be float16 or float32.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
- **grad_accum** (Parameter) - The dict of mutable tensor grad_accum. Must have the same
shape and dtype as `var`.
- **grad_square_accum** (Parameter) - The dict of mutable tensor grad_square_accum.
Must have the same shape and dtype as `var`.
- **grad** (Tensor) - A tensor for gradient. Must have the same shape and dtype as `var`.
- **indices** (Tensor) - A tensor of indices in the first dimension of `var` and `accum`.
If there are duplicates in `indices`, the behavior is undefined. Must be one of the
following types: int32, int64 and indices.shape[0] = grad.shape[0].
- **lr** (Union[Number, Tensor]) - Scaling factor. Must be a scalar. Must have the same type as `var`.
- **l1** (Union[Number, Tensor]) - L1 regularization. Must be a scalar. Must have the same type as `var`.
- **l2** (Union[Number, Tensor]) - L2 regularization. Must be a scalar. Must have the same type as `var`.
- **global_step** (Union[Number, Tensor]) - Training step number. Must be a scalar.
Must be one of the following types: int32, int64.
Outputs:
Tensor, with the same type and shape as 'var'.
Raises:
TypeError: If `var`, `grad_accum`, `grad_square_accum` is not a Parameter.
TypeError: If `grad` is not a Tensor.
TypeError: If `lr`, `l1`, `l2` or `global_step` is neither a Number nor a Tensor.
TypeError: If use_locking is not a bool.
TypeError: If dtype of `var`, `grad_accum`, `grad_square_accum`, `grad_accum`,
`lr`, `l1`, `l2` is neither float16 nor float32.
TypeError: If dtype of `grad_accum`, `grad_square_accum`, `grad_accum`
is not same as `var`.
TypeError: If dtype of `indices` is neither int32 nor int64.
TypeError: If shape of `indices` is not same as shape of first dimension of `grad`.
TypeError: If dtype of `global_step` is not int64.
ValueError: If the shape size of `lr`, `l1`, `l2` and `global_step` is not 0.
RuntimeError: If the data type of `var`, `grad_accum`, `grad_square_accum` and `grad`
conversion of Parameter is not supported.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> import mindspore.common.dtype as mstype
>>> import mindspore.ops.operations.nn_ops as nn_ops
>>> var = Tensor(np.array([[1,2], [1,2]]).astype(np.float32))
>>> grad_accum = Tensor(np.array([[2,1], [3,1]]).astype(np.float32))
>>> grad_square_accum = Tensor(np.array([[4,1], [5,1]]).astype(np.float32))
>>> grad = Tensor(np.array([[5,1], [6,1]]).astype(np.float32))
>>> indices = Tensor(np.array([0, 1], dtype=np.int32))
>>> lr = Tensor(2, mstype.float32)
>>> l1 = Tensor(-1, mstype.float32)
>>> l2 = Tensor(1, mstype.float32)
>>> global_step=Tensor(1, mstype.int64)
>>> sparse_apply_adagrad_da = nn_ops.SparseApplyAdagradDA()
>>> output = sparse_apply_adagrad_da(var, grad_accum, grad_square_accum,
... grad, indices, lr, l1, l2, global_step)
>>> print(output)
[[-1.8956923 -1.1715728]
[-2.1420605 -1.1715728]]
"""
__mindspore_signature__ = (
sig.make_sig('var', dtype=sig.sig_dtype.T),
sig.make_sig('grad_accum', dtype=sig.sig_dtype.T),
sig.make_sig('grad_square_accum', dtype=sig.sig_dtype.T),
sig.make_sig('grad', dtype=sig.sig_dtype.T),
sig.make_sig('indices', dtype=sig.sig_dtype.T1),
sig.make_sig('lr', dtype=sig.sig_dtype.T),
sig.make_sig('l1', dtype=sig.sig_dtype.T),
sig.make_sig('l2', dtype=sig.sig_dtype.T),
sig.make_sig('global_step', dtype=sig.sig_dtype.T2)
)
@prim_attr_register
def __init__(self, use_locking=False):
"""Initialize SparseApplyAdagradDA"""
self.init_prim_io_names(inputs=['var', 'grad_accum', 'grad_square_accum',
'grad', 'indices', 'lr', 'l1', 'l2', 'global_step'],
outputs=['var'])
validator.check_value_type("use_locking", use_locking, [bool], self.name)