mindspore.ops.jvp

mindspore.ops.jvp(fn, inputs, v)[source]

Compute the jacobian-vector-product of the given network. jvp matches forward-mode differentiation.

Parameters
  • fn (Union[Function, Cell]) – The function or net that takes Tensor inputs and returns single Tensor or tuple of Tensors.

  • inputs (Union[Tensor, tuple[Tensor], list[Tensor]]) – The inputs to fn .

  • v (Union[Tensor, tuple[Tensor], list[Tensor]]) – The vector in jacobian-vector-product. The shape and type of v should be the same as inputs .

Returns

  • net_output (Union[Tensor, tuple[Tensor]]) - The result of fn(inputs) .

  • jvp (Union[Tensor, tuple[Tensor]]) - The result of jacobian-vector-product.

Raises

TypeErrorinputs or v does not belong to required types.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import numpy as np
>>> from mindspore import ops
>>> from mindspore import Tensor
>>> class Net(nn.Cell):
...     def construct(self, x, y):
...         return x**3 + y
>>> x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32))
>>> y = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32))
>>> v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32))
>>> output = ops.jvp(Net(), (x, y), (v, v))
>>> print(output[0])
[[ 2. 10.]
 [30. 68.]]
>>> print(output[1])
[[ 4. 13.]
 [28. 49.]]