mindspore.ops.cdist

mindspore.ops.cdist(x, y, p=2.0)[source]

Computes batched the p-norm distance between each pair of the two collections of row vectors.

Parameters
  • x (Tensor) – Input tensor of shape \((B, P, M)\). Letter \(B\) represents 0 or positive int number. When \(B\) is equal to 0, it means this dimension can be ignored, i.e. shape of the tensor is \((P, M)\).

  • y (Tensor) – Input tensor of shape \((B, R, M)\).

  • p (float) – P value for the p-norm distance to calculate between each vector pair, P ∈ [0,∞]. Default: 2.0.

Returns

Tensor, has the same dtype as x, which shape is \((B, P, R)\).

Raises
  • TypeError – If x or y is not a Tensor.

  • TypeError – If dtype of x or y is neither float16 nor float32.

  • TypeError – If p is not a float.

  • ValueError – If p is a negative float.

  • ValueError – If dimension of x is not the same as y.

  • ValueError – If dimension of x or y is neither 2 nor 3.

Supported Platforms:

Ascend CPU

Examples

>>> x = Tensor(np.array([[[1.0, 1.0], [2.0, 2.0]]]).astype(np.float32))
>>> y = Tensor(np.array([[[3.0, 3.0], [3.0, 3.0]]]).astype(np.float32))
>>> output = ops.cdist(x, y, 2.0)
>>> print(output)
[[[2.8284273 2.8284273]
  [1.4142137 1.4142137]]]