mindspore.ops.TensorScatterDiv
- class mindspore.ops.TensorScatterDiv[source]
Creates a new tensor by dividing the values from the positions in input_x indicated by indices, with values from updates. When divided values are provided for the same index, the result of the update will be to divided these values respectively. Except that the updates are applied on output Tensor instead of input Parameter.
Refer to
mindspore.ops.tensor_scatter_div()
for more detail.- Supported Platforms:
GPU
CPU
Examples
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) >>> indices = Tensor(np.array([[0, 0], [0, 0]]), mindspore.int32) >>> updates = Tensor(np.array([1.0, 2.0]), mindspore.float32) >>> # Next, demonstrate the approximate operation process of this operator: >>> # 1, indices[0] = [0, 0], indices[1] = [0, 0] >>> # 2, And input_x[0, 0] = -0.1 >>> # 3, So input_x[indices] = [-0.1, -0.1] >>> # 4, Satisfy the above formula: input_x[indices].shape=(2) == updates.shape=(2) >>> op = ops.TensorScatterDiv() >>> # 5, Perform the division operation for the first time: >>> # first_input_x = input_x[0][0] / updates[0] = [[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]] >>> # 6, Perform the division operation for the second time: >>> # second_input_x = input_x[0][0] * updates[1] = [[-0.05, 0.3, 3.6], [0.4, 0.5, -3.2]] >>> output = op(input_x, indices, updates) >>> print(output) [[-0.05 0.3 3.6 ] [ 0.4 0.5 -3.2 ]]