Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Problem description

Agree to Privacy Statement

mindspore.ops.SparseApplyProximalAdagrad

class mindspore.ops.SparseApplyProximalAdagrad(use_locking=False)[source]

Updates relevant entries according to the proximal adagrad algorithm. Compared with ApplyProximalAdagrad, an additional index tensor is input.

accum+=gradgradprox_v=varlrgrad1accumvar=sign(prox_v)1+lrl2max(|prox_v|lrl1,0)

Inputs of var, accum and grad comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type.

Parameters

use_locking (bool) – If true, the var and accum tensors will be protected from being updated. Default: False.

Inputs:
  • var (Parameter) - Variable tensor to be updated. The data type must be float16 or float32. The shape is (N,) where means, any number of additional dimensions.

  • accum (Parameter) - Variable tensor to be updated, has the same shape and dtype as var.

  • lr (Union[Number, Tensor]) - The learning rate value, must be a float number or a scalar tensor with float16 or float32 data type.

  • l1 (Union[Number, Tensor]) - l1 regularization strength, must be a float number or a scalar tensor with float16 or float32 data type.

  • l2 (Union[Number, Tensor]) - l2 regularization strength, must be a float number or a scalar tensor with float16 or float32 data type.

  • grad (Tensor) - A tensor of the same type as var and grad.shape[1:] = var.shape[1:] if var.shape > 1.

  • indices (Tensor) - A tensor of indices in the first dimension of var and accum. If there are duplicates in indices, the behavior is undefined. Must be one of the following types: int32, int64 and indices.shape[0] = grad.shape[0].

Outputs:

Tuple of 2 tensors, the updated parameters.

  • var (Tensor) - The same shape and data type as var.

  • accum (Tensor) - The same shape and data type as accum.

Raises
  • TypeError – If use_locking is not a bool.

  • TypeError – If dtype of var, accum, lr, l1, l2 or grad is neither float16 nor float32.

  • TypeError – If dtype of indices is neither int32 nor int64.

  • RuntimeError – If the data type of var, accum and grad conversion of Parameter is not supported.

Supported Platforms:

Ascend GPU

Examples

>>> class Net(nn.Cell):
...     def __init__(self):
...         super(Net, self).__init__()
...         self.sparse_apply_proximal_adagrad = ops.SparseApplyProximalAdagrad()
...         self.var = Parameter(Tensor(np.array([[4.1, 7.2], [1.1, 3.0]], np.float32)), name="var")
...         self.accum = Parameter(Tensor(np.array([[0, 0], [0, 0]], np.float32)), name="accum")
...         self.lr = 1.0
...         self.l1 = 1.0
...         self.l2 = 0.0
...     def construct(self, grad, indices):
...         out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1,
...                                                  self.l2, grad, indices)
...         return out
...
>>> net = Net()
>>> grad = Tensor(np.array([[1, 1], [1, 1]], np.float32))
>>> indices = Tensor(np.array([0, 1], np.int32))
>>> output = net(grad, indices)
>>> print(output)
(Tensor(shape=[2, 2], dtype=Float32, value=
[[ 2.09999990e+00,  5.19999981e+00],
 [ 0.00000000e+00,  1.00000000e+00]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 1.00000000e+00,  1.00000000e+00],
 [ 1.00000000e+00,  1.00000000e+00]]))