mindspore.Tensor.hardshrink
- Tensor.hardshrink(lambd=0.5)[source]
Apply the Hard Shrink function for tensor. Calculates the output according to the input elements.
The formula is defined as follows:
\[\begin{split}\text{HardShrink}(x) = \begin{cases} x, & \text{ if } x > \lambda \\ x, & \text{ if } x < -\lambda \\ 0, & \text{ otherwise } \end{cases}\end{split}\]- Parameters
lambd (float) – The threshold \(\lambda\) defined by the Hard Shrink formula. Default: 0.5.
- Returns
Tensor, has the same shape and data type as self.
- Raises
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import numpy as np >>> import mindspore as ms >>> from mindspore import Tensor >>> x = Tensor(np.array([[0.5, 1, 2.0], [0.0533, 0.0776, -2.1233]]), ms.float32) >>> print(x.hardshrink()) [[ 0. 1. 2. ] [ 0. 0. -2.1233]]