mindspore.dataset.audio.SpectralCentroid
- class mindspore.dataset.audio.SpectralCentroid(sample_rate, n_fft=400, win_length=None, hop_length=None, pad=0, window=WindowType.HANN)[source]
Create a spectral centroid from an audio signal.
- Parameters
sample_rate (int) – Sampling rate of the waveform, e.g. 44100 (Hz).
n_fft (int, optional) – Size of FFT, creates n_fft // 2 + 1 bins (default=400).
win_length (int, optional) – Window size (default=None, will use n_fft).
hop_length (int, optional) – Length of hop between STFT windows (default=None, will use win_length // 2).
pad (int, optional) – Two sided padding of signal (default=0).
window (WindowType, optional) – Window function that is applied/multiplied to each frame/window, which can be WindowType.BARTLETT, WindowType.BLACKMAN, WindowType.HAMMING, WindowType.HANN or WindowType.KAISER (default=WindowType.HANN).
Examples
>>> import numpy as np >>> >>> waveform = np.random.random([5, 10, 20]) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"]) >>> transforms = [audio.SpectralCentroid(44100)] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])