Source code for mindspore.ops.function.array_func

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""Operators for function."""
from __future__ import absolute_import

import mindspore.common.dtype as mstype
from mindspore.ops import operations as P
from mindspore.ops.primitive import constexpr

from ..operations.array_ops import (
    UniqueConsecutive,
    NonZero,
    MatrixDiagV3,
    MatrixDiagPartV3,
    MatrixSetDiagV3,
    Fills,
    Col2Im,
    ArgMaxWithValue,
    ScatterNdMax,
    ScatterNdMul,
    IndexFill,
    AffineGrid,
)
from ..operations.nn_ops import AdaptiveMaxPool2D
from ..operations.array_ops import TensorScatterElements
from ...common import Tensor
from .._primitive_cache import _get_cache_prim

eye_ = P.Eye()
fill_ = P.Fill()
fills_ = Fills()
ones_ = P.Ones()
ones_like_ = P.OnesLike()
tile_ = P.Tile()
unique_with_pad_ = P.UniqueWithPad()
size_ = P.Size()
shape_ = P.Shape()
rank_ = P.Rank()
tensor_shape_ = P.TensorShape()
reshape_ = P.Reshape()
flatten_ = P.Flatten()
tensor_slice = P.Slice()
expand_dims_ = P.ExpandDims()
transpose_ = P.Transpose()
scatter_add_ = P.ScatterAdd()
scatter_max_ = P.ScatterMax()
scatter_min_ = P.ScatterMin()
scatter_mul_ = P.ScatterMul()
scatter_div_ = P.ScatterDiv()
scatter_nd_ = P.ScatterNd()
gather_ = P.Gather()
gather_d_ = P.GatherD()
gather_nd_ = P.GatherNd()
nonzero_ = NonZero()
scalar_cast_ = P.ScalarCast()
tensor_scatter_add_ = P.TensorScatterAdd()
tensor_scatter_sub_ = P.TensorScatterSub()
tensor_scatter_mul_ = P.TensorScatterMul()
tensor_scatter_div_ = P.TensorScatterDiv()
tensor_scatter_min_ = P.TensorScatterMin()
tensor_scatter_max_ = P.TensorScatterMax()
scalar_to_array_ = P.ScalarToArray()
scalar_to_tensor_ = P.ScalarToTensor()
tuple_to_array_ = P.TupleToArray()
masked_select_ = P.MaskedSelect()
matrix_band_part_ = P.array_ops.MatrixBandPart()
ger_ = P.Ger()
diag_ = P.Diag()
range_ = P.Range()
zeros_like_ = P.ZerosLike()
cast_ = P.Cast()
tensor_select_ = P.Select()
index_fill_ = IndexFill()
unsorted_segment_sum_ = P.UnsortedSegmentSum()
population_count_ = P.PopulationCount()


@constexpr
def get_x_shape(x_shape):
    if -1 in x_shape:
        return (-1,)
    if -2 in x_shape:
        return (-2,)
    s = 1
    for i in x_shape:
        s = s * i
    return (s,)


##############################
# Tensor Creation Functions.
##############################


[docs]def eye(n, m, t): """ Creates a tensor with ones on the diagonal and zeros in the rest. Note: Combines ReverseV2 operator to get an anti-diagonal Tensor, but ReverseV2 only supports Ascend and GPU platforms currently. Args: n (int): The number of rows of returned tensor. Constant value only. m (int): The number of columns of returned tensor. Constant value only. t (mindspore.dtype): MindSpore's dtype, the data type of the returned tensor. The data type can be Number. Returns: Tensor, a tensor with ones on the diagonal and the rest of elements are zero. The shape of `output` depends on the user's Inputs `n` and `m`. And the data type depends on Inputs `t`. Raises: TypeError: If `m` or `n` is not an int. ValueError: If `m` or `n` is less than 1. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> output = ops.eye(2, 2, mindspore.int32) >>> print(output) [[1 0] [0 1]] >>> print(output.dtype) Int32 >>> output = ops.eye(1, 2, mindspore.float64) >>> print(output) [[1. 0.]] >>> print(output.dtype) Float64 """ return eye_(n, m, t)
[docs]def matrix_band_part(x, lower, upper): r""" Copy a tensor setting everything outside a central band in each innermost matrix to zero. Args: x (Tensor): Input tensor. :math:`(*, m, n)` where :math:`*` means, any number of additional dimensions. The data type must be float16, float32, float64, int32 or int64. lower (Union[int, Tensor]): Number of subdiagonals to keep. The data type must be int32 or int64. If negative, keep entire lower triangle. upper (Union[int, Tensor]): Number of superdiagonals to keep. The data type must be int32 or int64. If negative, keep entire upper triangle. Returns: Tensor, has the same type and shape as `x`. Raises: TypeError: If `x` is not a Tensor. TypeError: If dtype of `x` is not one of float16, float32, float64, int32 or int64. TypeError: If `lower` is neither a number nor a Tensor. TypeError: If `upper` is neither a number nor a Tensor. TypeError: If dtype of `lower` is neither int32 nor int64. TypeError: If dtype of `upper` is neither int32 nor int64. ValueError: If the shape of `x` is not greater than or equal to 2D. ValueError: If the shape of `lower` is not equal to 0D. ValueError: If the shape of `upper` is not equal to 0D. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> x = Tensor(np.ones([2, 4, 4]).astype(np.float32)) >>> output = ops.matrix_band_part(x, 2, 1) >>> print(output) [[[1. 1. 0. 0.] [1. 1. 1. 0.] [1. 1. 1. 1.] [0. 1. 1. 1.]] [[1. 1. 0. 0.] [1. 1. 1. 0.] [1. 1. 1. 1.] [0. 1. 1. 1.]]] """ return matrix_band_part_(x, lower, upper)
[docs]def padding(x, pad_dim_size=8): r""" Extends the last dimension of the input tensor from 1 to pad_dim_size, by filling with 0. Args: x (Tensor): The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. The rank of `x` must be at least 2. The last dimension of `x` must be 1. The data type is Number. pad_dim_size (int): The value of the last dimension of `x` to be extended, which must be positive. Default: 8. Returns: Tensor, has the same type and shape as input shape value. Raises: TypeError: If `pad_dim_size` is not an int. ValueError: If `pad_dim_size` is less than 1. ValueError: If last dim of `x` is not equal to 1. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x = Tensor(np.array([[8], [10]]), mindspore.float32) >>> pad_dim_size = 4 >>> output = ops.padding(x, pad_dim_size) >>> print(output) [[ 8. 0. 0. 0.] [10. 0. 0. 0.]] """ padding_ = _get_cache_prim(P.array_ops.Padding)(pad_dim_size) return padding_(x)
[docs]def one_hot(indices, depth, on_value, off_value, axis=-1): r""" Computes a one-hot tensor. The locations represented by indices in `indices` take value `on_value`, while all other locations take value `off_value`. Note: If the input indices is rank `N`, the output will have rank `N+1`. The new axis is created at dimension `axis`. Args: indices(Tensor): A tensor of indices. Tensor of shape :math:`(X_0, \ldots, X_n)`. Data type must be uint8, int32 or int64. depth(int): A scalar defining the depth of the one-hot dimension. on_value(Tensor): A value to fill in output when `indices[j] = i`. Support uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64, bool, complex64, complex128. off_value(Tensor): A value to fill in output when `indices[j] != i`. Has the same data type as `on_value`. axis(int): Position to insert the value. e.g. If shape of `self` is :math:`(N, C)`, and `axis` is -1, the output shape will be :math:`(N, C, D)`, If `axis` is 0, the output shape will be :math:`(D, N, C)`. Default: -1. Returns: Tensor, one-hot tensor. Tensor of shape :math:`(X_0, \ldots, X_{axis}, \text{depth} ,X_{axis+1}, \ldots, X_n)`. Raises: TypeError: If `axis` or `depth` is not an int. TypeError: If dtype of `indices` is not uint8, int32 or int64. TypeError: If `indices`, `on_value` or `off_value` is not a Tensor. ValueError: If `axis` is not in range [-1, ndim]. ValueError: If `depth` is less than 0. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> indices = Tensor(np.array([0, 1, 2]), mindspore.int32) >>> depth, on_value, off_value = 3, Tensor(1.0, mindspore.float32), Tensor(0.0, mindspore.float32) >>> output = ops.one_hot(indices, depth, on_value, off_value, axis=-1) >>> print(output) [[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]] """ onehot = _get_cache_prim(P.OneHot)(axis) return onehot(indices, depth, on_value, off_value)
[docs]def fill(type, shape, value): """ Create a Tensor of the specified shape and fill it with the specified value. Args: type (mindspore.dtype): The specified type of output tensor. The data type only supports `bool_ <https://www.mindspore.cn/docs/en/r1.10/api_python/mindspore.html#mindspore.dtype>`_ and `number <https://www.mindspore.cn/docs/en/r1.10/api_python/mindspore.html#mindspore.dtype>`_ . shape (tuple[int]): The specified shape of output tensor. value (Union(number.Number, bool)): Value to fill the returned tensor. Returns: Tensor. Raises: TypeError: If `shape` is not a tuple. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> output = ops.fill(mindspore.float32, (2, 2), 1) >>> print(output) [[1. 1.] [1. 1.]] >>> output = ops.fill(mindspore.float32, (3, 3), 0) >>> print(output) [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] """ return fill_(type, shape, value)
def fills(x, value): """ Create a tensor of the same shape and type as the input tensor and fill it with specified value. Args: x (Tensor): Input tensor, used to specify the shape and type of the output tensor. The data type should be int8, int16, int32, float16 or float32. value (Union[int, float, Tensor]): All elements of the output tensor will be assigned this value. The type should be int, float or 0-dimensional tensor. Returns: Tensor, with the same shape and type as input tensor. Raises: TypeError: If `x` is not a tensor. TypeError: If `value` has types not specified above. RuntimeError: If `value` cannot be converted to the same type as `x`. ValueError: If `value` is a tensor and the length of dimension is not 0. Supported Platforms: ``GPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.arange(4).reshape((2, 2)).astype('float32')) >>> output = ops.fills(x, 1) >>> print(output) [[1. 1.] [1. 1.]] """ if isinstance(value, float): value_ = value elif isinstance(value, int): value_ = float(value) elif isinstance(value, Tensor): if value.ndim != 0: raise ValueError("For 'ops.fills', if the argument 'value' is a tensor, the number of its dimension" " should be 0, but got {}".format(value.ndim)) value_ = value.astype(mstype.float32) else: raise TypeError("For 'ops.fills', the type of argument 'value' should be int, float or Tensor," " but got {}".format(type(value))) return fills_(x, value_)
[docs]def ones(shape, type): r""" Creates a tensor filled with value ones. Creates a tensor with shape described by the first argument and fills it with value ones in type of the second argument. Args: shape (Union[tuple[int], int]): The specified shape of output tensor. Only constant positive int is allowed. type (mindspore.dtype): The specified type of output tensor. Only constant value is allowed. Returns: Tensor, has the same type and shape as input shape value. Raises: TypeError: If `shape` is neither tuple nor int. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> output = ops.ones((2, 2), mindspore.float32) >>> print(output) [[1. 1.] [1. 1.]] >>> output = ops.ones((3, 3), mindspore.float32) >>> print(output) [[1. 1. 1.] [1. 1. 1.] [1. 1. 1.]] """ return ones_(shape, type)
[docs]def ones_like(input_x): """ Returns a Tensor with a value of 1 and its shape and data type is the same as the input. Args: input_x (Tensor): Tensor of any dimension. Returns: Tensor, has the same shape and type as `input_x` but filled with ones. Raises: TypeError: If `input_x` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)) >>> output = ops.ones_like(input_x) >>> print(output) [[1 1] [1 1]] """ return ones_like_(input_x)
[docs]def tile(input_x, multiples): r""" Replicates an input tensor with given multiples times. Creates a new tensor by replicating `input_x` `multiples` times. The i'th dimension of output tensor has `input_x.shape[i] * multiples[i]` elements, and the values of `input_x` are replicated `multiples[i]` times along the i'th dimension. Note: The length of `multiples` must be greater or equal to the length of dimension in `input_x`. Args: input_x (Tensor): 1-D or higher dimensional Tensor. Set the shape of input tensor as :math:`(x_1, x_2, ..., x_S)` . multiples (tuple[int]): The parameter that specifies the number of replications, the parameter type is tuple, and the data type is int, i.e., :math:`(y_1, y_2, ..., y_S)`. The length of `multiples` cannot be smaller than the length of the shape of `input_x`. Only constant value is allowed. Returns: Tensor, has the same data type as the `input_x`. Suppose the length of `multiples` is `d`, the dimension of `input_x` is `input_x.dim`, and the shape of `input_x` is :math:`(x_1, x_2, ..., x_S)`. - If `input_x.dim = d`, then the shape of their corresponding positions can be multiplied, and the shape of Outputs is :math:`(x_1*y_1, x_2*y_2, ..., x_S*y_R)`. - If `input_x.dim < d`, fill in multiple 1 in the length of the shape of `input_x` until their lengths are consistent. Such as set the shape of `input_x` as :math:`(1, ..., x_1, x_2, ..., x_S)`, then the shape of their corresponding positions can be multiplied, and the shape of Outputs is :math:`(1*y_1, ..., x_S*y_R)`. Raises: TypeError: If `multiples` is not a tuple or its elements are not all int. ValueError: If the elements of `multiples` are not all greater than 0. ValueError: If the length of `multiples` are smaller than the length of dimension in `input_x`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.float32) >>> multiples = (2, 3) >>> output = ops.tile(input_x, multiples) >>> print(output) [[1. 2. 1. 2. 1. 2.] [3. 4. 3. 4. 3. 4.] [1. 2. 1. 2. 1. 2.] [3. 4. 3. 4. 3. 4.]] >>> multiples = (2, 3, 2) >>> output = ops.tile(input_x, multiples) >>> print(output) [[[1. 2. 1. 2.] [3. 4. 3. 4.] [1. 2. 1. 2.] [3. 4. 3. 4.] [1. 2. 1. 2.] [3. 4. 3. 4.]] [[1. 2. 1. 2.] [3. 4. 3. 4.] [1. 2. 1. 2.] [3. 4. 3. 4.] [1. 2. 1. 2.] [3. 4. 3. 4.]]] """ return tile_(input_x, multiples)
[docs]def range(start, limit, delta): r""" Creates a sequence of numbers that begins at `start` and extends by increments of `delta` up to but not including `limit`. The types of all 3 inputs must be the same. The type of the resulting tensor is the same as the type of the inputs. Args: start (Tensor): A scalar Tensor. The first number in the sequence. Must have type: int32 ,int64, float32 or float64. limit (Tensor): A scalar Tensor. Upper limit of the sequence, exclusive. Must have type: int32 ,int64, float32 or float64. delta (Tensor): A scalar Tensor. Number that increments `start`. Must have type: int32 ,int64, float32 or float64. Returns: A 1-D Tensor, with the same type as the inputs. Raises: TypeError: If `start`, `limit` or `delta` is not scalar Tensor. TypeError: If datatype of `start`, `limit` or `delta` is not same. TypeError: If datatype of `start`, `limit` or `delta` is not supported. ValueError: If `delta` = 0. ValueError: If `start` >= `limit` when `delta` > 0. ValueError: If `start` <= `limit` when `delta` < 0. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> start = Tensor(0, mstype.int32) >>> limit = Tensor(10, mstype.int32) >>> delta = Tensor(4, mstype.int32) >>> output = ops.range(start, limit, delta) >>> print(output) [0 4 8] """ return range_(start, limit, delta)
############################## # Tensor Operation Functions. ##############################
[docs]def unique(x): """ Returns the unique elements of input tensor and also return a tensor containing the index of each value of input tensor corresponding to the output unique tensor. The output contains Tensor `y` and Tensor `idx`, the format is probably similar to (`y`, `idx`). The shape of Tensor `y` and Tensor `idx` is different in most cases, because Tensor `y` will be deduplicated, and the shape of Tensor `idx` is consistent with the input. To get the same shape between `idx` and `y`, please ref to :class:'mindspore.ops.UniqueWithPad' operator. Args: x (Tensor): The input tensor. The shape is :math:`(N,*)` where :math:`*` means, any number of additional dimensions. .. warning:: This is an experimental prototype that is subject to change and/or deletion. Returns: Tuple, containing Tensor objects (`y`, `idx`), `y` is a tensor with the same type as `x`, and contains the unique elements in `x`. `idx` is a tensor containing indices of elements in the input corresponding to the output tensor, have the same shape with `x`. Raises: TypeError: If `x` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, nn >>> from mindspore import ops >>> x = Tensor(np.array([1, 2, 5, 2]), mindspore.int32) >>> output = ops.unique(x) >>> print(output) (Tensor(shape=[3], dtype=Int32, value= [1, 2, 5]), Tensor(shape=[4], dtype=Int32, value= [0, 1, 2, 1])) >>> y = output[0] >>> print(y) [1 2 5] >>> idx = output[1] >>> print(idx) [0 1 2 1] """ unique_op = _get_cache_prim(P.Unique)() reshape_op = _get_cache_prim(P.Reshape)() shape_x = x.shape length_x = get_x_shape(shape_x) x = reshape_op(x, length_x) y, idx = unique_op(x) idx = reshape_op(idx, shape_x) return y, idx
[docs]def unique_with_pad(x, pad_num): """ Returns unique elements and relative indexes in 1-D tensor, filled with padding num. The basic function is the same as the Unique operator, but the UniqueWithPad operator adds a Pad function. The returned tuple(`y`, `idx`) after the input Tensor `x` is processed by the unique operator, in which the shapes of `y` and `idx` are mostly not equal. Therefore, in order to solve the above situation, the UniqueWithPad operator will fill the `y` Tensor with the `pad_num` specified by the user to make it have the same shape as the Tensor `idx`. Args: x (Tensor): The tensor need to be unique. Must be 1-D vector with types: int32, int64. pad_num (int): Pad num. The data type is an int. Returns: tuple(Tensor), tuple of 2 tensors, `y` and `idx`. - y (Tensor) - The unique elements filled with pad_num, the shape and data type same as `x`. - idx (Tensor) - The index of each value of `x` in the unique output `y`, the shape and data type same as `x`. Raises: TypeError: If dtype of `x` is neither int32 nor int64. ValueError: If length of shape of `x` is not equal to 1. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, nn >>> from mindspore import ops >>> x = Tensor(np.array([1, 2, 5, 2, 3, 5]), mindspore.int32) >>> output = ops.unique_with_pad(x, 0) >>> print(output) (Tensor(shape=[6], dtype=Int32, value= [1, 2, 5, 3, 0, 0]), Tensor(shape=[6], dtype=Int32, value= [0, 1, 2, 1, 3, 2])) >>> y = output[0] >>> print(y) [1 2 5 3 0 0] >>> idx = output[1] >>> print(idx) [0 1 2 1 3 2] """ return unique_with_pad_(x, pad_num)
[docs]def unique_consecutive(x, return_idx=False, return_counts=False, axis=None): """ Returns the elements that are unique in each consecutive group of equivalent elements in the input tensor. Args: x (Tensor): The input tensor. return_idx (bool, optional): Whether to return the indices of the end position of each element in the original input list in the returned unique list. Default: False. return_counts (bool, optional): Whether to return the counts of each unique element. Default: False. axis (int, optional): The dimension to apply unique. If None, the unique of the flattened input is returned. If specified, it must be int32 or int64. Default: None. Returns: A tensor or a tuple of tensors containing tensor objects (`output`, `idx`, `counts`). `output` has the same type as `x` and is used to represent the output list of unique scalar elements. If `return_idx` is True, there will be an additional returned tensor, `idx`, which has the same shape as `x` and represents the index of where the element in the original input maps to the position in the output. If `return_counts` is True, there will be an additional returned tensor, `counts`, which represents the number of occurrences for each unique value or tensor. Raises: TypeError: If `x` is not a Tensor. RuntimeError: If `axis` is not in the range of :math:`[-ndim, ndim-1]`. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import numpy as np >>> from mindspore import ops >>> from mindspore import Tensor >>> from mindspore import dtype as mstype >>> x = Tensor(np.array([1, 1, 2, 2, 3, 1, 1, 2]), mstype.int32) >>> output, idx, counts = ops.unique_consecutive(x, True, True, None) >>> print(output) [1 2 3 1 2] >>> print(idx) [0 0 1 1 2 3 3 4] >>> print(counts) [2 2 1 2 1] """ unique_consecutive_op = _get_cache_prim(UniqueConsecutive)(return_idx, return_counts, axis) output, idx, counts = unique_consecutive_op(x) if return_idx and return_counts: return output, idx, counts if return_idx: return output, idx if return_counts: return output, counts return output
[docs]def ger(x1, x2): r""" Ger product of `x1` and `x2`. Calculate the outer product of two arrays. If `x1` is a 1D Tensor of shape :math:`(m,)` and `x2` is a 1D Tensor of shape :math:`(n,)`, then `output` must be a 2D Tensor of shape :math:`(m, n)`. Note: Currently Ascend does not support float64 data input. Args: x1 (Tensor): input Tensor, with dtype of float16, float32 or float64. x2 (Tensor): input Tensor, with dtype of float16, float32 or float64, must have the same dtype as `x1`. Returns: Tensor, output matrix with the same dtype as inputs. With `x1` shape :math:`(m,)` and `x2` shape of :math:`(n,)`, the `output` has shape :math:`(m, n)`. Raises: TypeError: If `x1` or `x2` is not a 1-D Tensor. TypeError: If the dtype of `x1` and `x2` is not float16, float32 or float64. TypeError: If the dtype of `x1` and `x2` are not the same. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x1 = Tensor([1., 2., 3., 4.], mindspore.float32) >>> x2 = Tensor([1., 2., 3.], mindspore.float32) >>> output = ops.ger(x1, x2) >>> print(output) [[ 1. 2. 3.] [ 2. 4. 6.] [ 3. 6. 9.] [ 4. 8. 12.]] """ return ger_(x1, x2)
[docs]def size(input_x): r""" Returns a Scalar of type int that represents the size of the input Tensor and the total number of elements in the Tensor. Args: input_x (Tensor): Input parameters, the shape of tensor is :math:`(x_1, x_2, ..., x_R)`. The data type is `number <https://www.mindspore.cn/docs/en/r1.10/api_python/mindspore.html#mindspore.dtype>`_. Returns: int. A scalar representing the elements' size of `input_x`, tensor is the number of elements in a tensor, :math:`size=x_1*x_2*...x_R`. The data type is an int. Raises: TypeError: If `input_x` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) >>> output = ops.size(input_x) >>> print(output) 4 """ return size_(input_x)
[docs]def shape(input_x): """ Returns the shape of the input tensor. And it used to be static shape. static shape: A shape that can be obtained without running the graph. It is an inherent property of tensor and may be unknown. The static shape information can be completed by artificial setting. No matter what the input of the graph is, the static shape is not affected. Args: input_x (Tensor): The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. Returns: tuple[int], the output tuple is constructed by multiple integers, :math:`(x_1, x_2, ..., x_R)`. Raises: TypeError: If `input_x` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32) >>> output = ops.shape(input_x) >>> print(output) (3, 2, 1) """ return shape_(input_x)
def dyn_shape(input_x): """ Returns the shape of the input tensor. Args: input_x (Tensor): The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. Returns: Tensor[int], 1-dim Tensor of type int32 Raises: TypeError: If `input_x` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32) >>> output = ops.dyn_shape(input_x) >>> print(output) [3 2 1] """ return tensor_shape_(input_x)
[docs]def rank(input_x): """ Returns the rank of a tensor. Returns a 0-D int32 Tensor representing the rank of input; the rank of a tensor is the number of indices required to uniquely select each element of the tensor. Args: input_x (Tensor): The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. The data type is Number. Returns: Tensor. 0-D int32 Tensor representing the rank of input, i.e., :math:`R`. The data type is an int. Raises: TypeError: If `input_x` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) >>> output = ops.rank(input_tensor) >>> print(output) 2 >>> print(type(output)) <class 'int'> """ return rank_(input_x)
[docs]def reshape(input_x, input_shape): """ Rearranges the input Tensor based on the given shape. The 'input_shape' can only have one -1 at most, in which case it’s inferred from the remaining dimensions and the number of elements in the input. Args: input_x (Tensor): The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. input_shape (Union[tuple[int], Tensor[int]]): Constructed by multiple integers, i.e., :math:`(y_1, y_2, ..., y_S)`. Only constant value is allowed. Returns: Tensor, the shape of tensor is :math:`(y_1, y_2, ..., y_S)`. Raises: ValueError: Given a shape tuple, if it has several -1; or if the product of its elements is less than or equal to 0 or cannot be divided by the product of the input tensor shape; or if it does not match the input's array size. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) >>> output = ops.reshape(input_x, (3, 2)) >>> print(output) [[-0.1 0.3] [ 3.6 0.4] [ 0.5 -3.2]] """ return reshape_(input_x, input_shape)
[docs]def reverse_sequence(x, seq_lengths, seq_dim, batch_dim=0): """ Reverses variable length slices. Args: x (Tensor): The input to reverse, supporting all number types including bool. seq_lengths (Tensor): Must be a 1-D vector with int32 or int64 types. seq_dim (int): The dimension where reversal is performed. Required. batch_dim (int): The input is sliced in this dimension. Default: 0. Returns: Tensor, with the same shape and data type as `x`. Raises: TypeError: If `seq_dim` or `batch_dim` is not an int. ValueError: If value of `batch_dim` is equal to or greater than length of shape of input. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32) >>> seq_lengths = Tensor(np.array([1, 2, 3])) >>> output = ops.reverse_sequence(x, seq_lengths, seq_dim=1) >>> print(output) [[1. 2. 3.] [5. 4. 6.] [9. 8. 7.]] >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32) >>> seq_lengths = Tensor(np.array([1, 2, 3])) >>> output = ops.reverse_sequence(x, seq_lengths, seq_dim=0, batch_dim=1) >>> print(output) [[1. 5. 9.] [4. 2. 6.] [7. 8. 3.]] >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32) >>> seq_lengths = Tensor(np.array([2, 2, 3])) >>> output = ops.reverse_sequence(x, seq_lengths, seq_dim=1) >>> print(output) [[2. 1. 3.] [5. 4. 6.] [9. 8. 7.]] >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32) >>> seq_lengths = Tensor(np.array([3, 2, 3])) >>> output = ops.reverse_sequence(x, seq_lengths, seq_dim=1) >>> print(output) [[3. 2. 1.] [5. 4. 6.] [9. 8. 7.]] >>> x = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8]]), mindspore.float32) >>> seq_lengths = Tensor(np.array([4, 4])) >>> output = ops.reverse_sequence(x, seq_lengths, seq_dim=1) >>> print(output) [[4. 3. 2. 1.] [8. 7. 6. 5.]] """ return P.ReverseSequence(seq_dim=seq_dim, batch_dim=batch_dim)(x, seq_lengths)
[docs]def flatten(input_x): r""" Flattens a tensor without changing its batch size on the 0-th axis. Args: input_x (Tensor): Tensor of shape :math:`(N, \ldots)` to be flattened, where :math:`N` is batch size. Returns: Tensor, the shape of the output tensor is :math:`(N, X)`, where :math:`X` is the product of the remaining dimension. Raises: TypeError: If `input_x` is not a Tensor. ValueError: If length of shape of `input_x` is less than 1. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.ones(shape=[1, 2, 3, 4]), mindspore.float32) >>> output = ops.flatten(input_x) >>> print(output.shape) (1, 24) """ return flatten_(input_x)
@constexpr def _check_select_type_match(scalar, tensor_type, scalar_name, tensor_name): if isinstance(scalar, int) and tensor_type != mstype.int32: raise TypeError(f"For functional operator[select], the input[{scalar_name}] is int, " f"then the input[{tensor_name}] must be a Tensor of int32.") if isinstance(scalar, float) and tensor_type != mstype.float32: raise TypeError(f"For functional operator[select], the input[{scalar_name}] is float, " f"then the input[{tensor_name}] must be a Tensor of float32.") @constexpr def _check_select_shape_match(input_shape, cond_shape, tensor_name): if input_shape != cond_shape: raise ValueError(f"For functional operator[select], the cond shape must be same as {tensor_name} shape.") @constexpr def _check_select_type(is_cond_tensor, is_x_scalar, is_y_scalar, is_x_tensor, is_y_tensor): if not is_cond_tensor: raise TypeError(f"For functional operator[select], the input[cond] must be a Tensor.") if is_x_scalar and not is_y_tensor: raise TypeError(f"For functional operator[select], the input[x] is int or float, " f"then the input[y] must be a Tensor.") if is_y_scalar and not is_x_tensor: raise TypeError(f"For functional operator[select], the input[y] is int or float, " f"then the input[x] must be a Tensor.")
[docs]def select(cond, x, y): r""" The conditional tensor determines whether the corresponding element in the output must be selected from :math:`x` (if true) or :math:`y` (if false) based on the value of each element. It can be defined as: .. math:: out_i = \begin{cases} x_i, & \text{if } cond_i \\ y_i, & \text{otherwise} \end{cases} Args: cond (Tensor[bool]): The condition tensor, decides which element is chosen. The shape is :math:`(x_1, x_2, ..., x_N, ..., x_R)`. x (Union[Tensor, int, float]): The first Tensor or number to be selected. If x is a Tensor, the shape is :math:`(x_1, x_2, ..., x_N, ..., x_R)`. If x is an int or a float, it will be cast to the type of int32 or float32, and broadcast to the same shape as y. One of x and y must be a Tensor. y (Union[Tensor, int, float]): The second Tensor or number to be selected. If y is a Tensor, The shape is :math:`(x_1, x_2, ..., x_N, ..., x_R)`. If y is an int or a float, it will be cast to the type of int32 or float32, and broadcast to the same shape as x. One of x and y must be a Tensor. Returns: Tensor, has the same shape as `cond`. Raises: TypeError: If `x` or `y` is not a Tensor, int or float. ValueError: The shapes of inputs are different. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> # 1) Both inputs are Tensor >>> >>> cond = Tensor([True, False]) >>> x = Tensor([2,3], mindspore.float32) >>> y = Tensor([1,2], mindspore.float32) >>> output = ops.select(cond, x, y) >>> print(output) [2. 2.] >>> # 2) y is a float >>> cond = Tensor([True, False]) >>> x = Tensor([2,3], mindspore.float32) >>> y = 2.0 >>> output = ops.select(cond, x, y) >>> print(output) [2. 2.] """ is_x_scalar = isinstance(x, (int, float)) is_y_scalar = isinstance(y, (int, float)) is_x_tensor = isinstance(x, Tensor) is_y_tensor = isinstance(y, Tensor) is_cond_tensor = isinstance(cond, Tensor) _check_select_type(is_cond_tensor, is_x_scalar, is_y_scalar, is_x_tensor, is_y_tensor) input_x = x input_y = y if is_x_scalar: _check_select_shape_match(y.shape, cond.shape, "y") _check_select_type_match(x, y.dtype, "x", "y") input_x = zeros_like_(y) + x if isinstance(x, int): input_x = cast_(input_x, mstype.int32) else: input_x = cast_(input_x, mstype.float32) if is_y_scalar: _check_select_shape_match(x.shape, cond.shape, "x") _check_select_type_match(y, x.dtype, "y", "x") input_y = zeros_like_(x) + y if isinstance(y, int): input_y = cast_(input_y, mstype.int32) else: input_y = cast_(input_y, mstype.float32) return tensor_select_(cond, input_x, input_y)
[docs]def slice(input_x, begin, size): r""" Slices a tensor in the specified shape. Slice the tensor `input_x` in shape of `size` and starting at the location specified by `begin`, The slice `begin` represents the offset in each dimension of `input_x`, The slice `size` represents the size of the output tensor. Note: `begin` is zero-based and `size` is one-based. If `size[i]` is -1, all remaining elements in dimension i are included in the slice. This is equivalent to setting :math:`size[i] = input\_x.shape(i) - begin[i]`. Args: input_x (Tensor): The target tensor. The shape is :math:`(N,*)` where :math:`*` means, any number of additional dimensions. begin (Union[tuple, list]): The beginning of the slice. Only constant value(>=0) is allowed. size (Union[tuple, list]): The size of the slice. Only constant value is allowed. Returns: Tensor, the shape is input `size`, the data type is the same as `input_x`. Raises: TypeError: If `begin` or `size` is neither tuple nor list. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import Tensor >>> from mindspore import ops >>> import numpy as np >>> data = Tensor(np.array([[[1, 1, 1], [2, 2, 2]], ... [[3, 3, 3], [4, 4, 4]], ... [[5, 5, 5], [6, 6, 6]]]).astype(np.int32)) >>> output = ops.slice(data, (1, 0, 0), (1, 1, 3)) >>> print(output) [[[3 3 3]]] >>> output = ops.slice(data, (1, 0, 0), (1, 1, 2)) >>> print(output) [[[3 3]]] >>> output = ops.slice(data, (1, 0, 0), (1, 1, 1)) >>> print(output) [[[3]]] >>> output = ops.slice(data, (1, 1, 0), (1, 1, 3)) >>> print(output) [[[4 4 4]]] >>> output = ops.slice(data, (1, 0, 1), (1, 1, 2)) >>> print(output) [[[3 3]]] """ return tensor_slice(input_x, begin, size)
[docs]def concat(input_x, axis=0): r""" Connect tensor in the specified axis. Connect input tensors along with the given axis. The input data is a tuple of tensors. These tensors have the same rank :math:`R`. Set the given axis as :math:`m`, and :math:`0 \le m < R`. Set the number of input tensors as :math:`N`. For the :math:`i`-th tensor :math:`t_i`, it has the shape of :math:`(x_1, x_2, ..., x_{mi}, ..., x_R)`. :math:`x_{mi}` is the :math:`m`-th dimension of the :math:`t_i`. Then, the shape of the output tensor is .. math:: (x_1, x_2, ..., \sum_{i=1}^Nx_{mi}, ..., x_R) Args: input_x (tuple, list): A tuple or a list of input tensors. Suppose there are two tensors in this tuple or list, namely t1 and t2. To perform `concat` in the axis 0 direction, except for the :math:`0`-th axis, all other dimensions should be equal, that is, :math:`t1.shape[1] = t2.shape[1], t1.shape[2] = t2.shape[2], ..., t1.shape[R-1] = t2.shape[R-1]`, axis (int): The specified axis, whose value is in range :math:`[-R, R)`. Default: 0. Returns: Tensor, the shape is :math:`(x_1, x_2, ..., \sum_{i=1}^Nx_{mi}, ..., x_R)`. The data type is the same with `input_x`. Raises: TypeError: If `axis` is not an int. ValueError: If `input_x` have different dimension of tensor. ValueError: If `axis` not in range :math:`[-R, R)`. RuntimeError: If tensor's shape in `input_x` except for `axis` are different. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x1 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.float32)) >>> input_x2 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.float32)) >>> output = ops.concat((input_x1, input_x2)) >>> print(output) [[0. 1.] [2. 1.] [0. 1.] [2. 1.]] >>> output = ops.concat((input_x1, input_x2), 1) >>> print(output) [[0. 1. 0. 1.] [2. 1. 2. 1.]] """ _concat = _get_cache_prim(P.Concat)(axis) return _concat(input_x)
[docs]def stack(input_x, axis=0): r""" Stacks a list of tensors in specified axis. Stacks the list of input tensors with the same rank `R`, output is a tensor of rank `(R+1)`. Given input tensors of shape :math:`(x_1, x_2, ..., x_R)`. Set the number of input tensors as `N`. If :math:`0 \le axis`, the shape of the output tensor is :math:`(x_1, x_2, ..., x_{axis}, N, x_{axis+1}, ..., x_R)`. Args: input_x (Union[tuple, list]): A Tuple or list of Tensor objects with the same shape and type. axis (int): Dimension to stack. Default: 0. Negative values wrap around. The range is [-(R+1), R+1). Returns: Tensor. A stacked Tensor with the same type as `input_x`. Raises: TypeError: If the data types of elements in `input_x` are not the same. ValueError: If the length of `input_x` is not greater than 1; or if axis is out of the range [-(R+1), R+1); or if the shapes of elements in input_x are not the same. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x1 = Tensor(np.array([0, 1]).astype(np.float32)) >>> input_x2 = Tensor(np.array([2, 3]).astype(np.float32)) >>> output = ops.stack((input_x1, input_x2), 0) >>> print(output) [[0. 1.] [2. 3.]] """ _stack = _get_cache_prim(P.Stack)(axis) return _stack(input_x)
[docs]def unstack(input_x, axis=0): r""" Unstacks tensor in specified axis. Unstacks a tensor of rank `R` along axis dimension, output tensors will have rank `(R-1)`. Given a tensor of shape :math:`(x_1, x_2, ..., x_R)`. If :math:`0 \le axis`, the shape of tensor in output is :math:`(x_1, x_2, ..., x_{axis}, x_{axis+2}, ..., x_R)`. This is the opposite of pack. Args: input_x (Tensor): The shape is :math:`(x_1, x_2, ..., x_R)`. A tensor to be unstacked and the rank of the tensor must be greater than 0. axis (int): Dimension along which to unpack. Default: 0. Negative values wrap around. The range is [-R, R). Returns: A tuple of tensors, the shape of each objects is the same. Raises: ValueError: If axis is out of the range [-len(input_x.shape), len(input_x.shape)). Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]])) >>> output = ops.unstack(input_x, 0) >>> print(output) (Tensor(shape=[4], dtype=Int64, value= [1, 1, 1, 1]), Tensor(shape=[4], dtype=Int64, value= [2, 2, 2, 2])) """ _unstack = _get_cache_prim(P.Unstack)(axis) return _unstack(input_x)
[docs]def expand_dims(input_x, axis): """ Adds an additional dimension to `input_x` at the given axis. Note: If the specified axis is a negative number, the index is counted backward from the end and starts at 1. Args: input_x (Tensor): The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. axis (int): Specifies the dimension index at which to expand the shape of `input_x`. The value of axis must be in the range `[-input_x.ndim-1, input_x.ndim]`. Only constant value is allowed. Returns: Tensor, the shape of tensor is :math:`(1, x_1, x_2, ..., x_R)` if the value of `axis` is 0. It has the same data type as `input_x`. Raises: TypeError: If `axis` is not an int. ValueError: If `axis` is not in the valid range :math:`[-a.ndim-1, a.ndim]`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) >>> output = ops.expand_dims(input_tensor, 0) >>> print(output) [[[2. 2.] [2. 2.]]] """ return expand_dims_(input_x, axis)
[docs]def squeeze(input_x, axis=()): """ Return the Tensor after deleting the dimension of size 1 in the specified `axis`. If :math:`axis=()`, it will remove all the dimensions of size 1. If `axis` is specified, it will remove the dimensions of size 1 in the given `axis`. For example, if the dimension is not specified :math:`axis=()`, input shape is (A, 1, B, C, 1, D), then the shape of the output Tensor is (A, B, C, D). If the dimension is specified, the squeeze operation is only performed in the specified dimension. If input shape is (A, 1, B), input Tensor will not be changed when :math:`axis=0` , but when :math:`axis=1` , the shape of the input Tensor will be changed to (A, B). Note: - Please note that in dynamic graph mode, the output Tensor will share data with the input Tensor, and there is no Tensor data copy process. - The dimension index starts at 0 and must be in the range `[-input.ndim, input.ndim]`. Args: input_x (Tensor): The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. axis (Union[int, tuple(int)]): Specifies the dimension indexes of shape to be removed, which will remove all the dimensions of size 1 in the given axis parameter. If specified, it must be int32 or int64. Default: (), an empty tuple. Returns: Tensor, the shape of tensor is :math:`(x_1, x_2, ..., x_S)`. Raises: TypeError: If `input_x` is not a tensor. TypeError: If `axis` is neither an int nor tuple. TypeError: If `axis` is a tuple whose elements are not all int. ValueError: If the corresponding dimension of the specified axis isn't equal to 1. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32) >>> output = ops.squeeze(input_x) >>> print(output) [[1. 1.] [1. 1.] [1. 1.]] """ squeeze_ = _get_cache_prim(P.Squeeze)(axis) return squeeze_(input_x)
[docs]def transpose(input_x, input_perm): """ Permutes the dimensions of the input tensor according to input permutation. For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-D array into a 2D column vector please refer the class: mindspore.ops.ExpandDims. For a 2-D array, this is a standard matrix transpose. For an n-D array, if axes are given, their order indicates how the axes are permuted (see Examples). If axes are not provided and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]). Note: On GPU and CPU, if the value of `input_perm` is negative, its actual value is `input_perm[i] + rank(input_x)`. Negative value of `input_perm` is not supported on Ascend. Args: input_x (Tensor): The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. input_perm (tuple[int]): The permutation to be converted. The elements in `input_perm` are composed of the indexes of each dimension of `input_x`. The length of `input_perm` and the shape of `input_x` must be the same. Only constant value is allowed. Must be in the range [-rank(input_x), rank(input_x)). Returns: Tensor, the type of output tensor is the same as `input_x` and the shape of output tensor is decided by the shape of `input_x` and the value of `input_perm`. Raises: TypeError: If `input_perm` is not a tuple. ValueError: If length of shape of `input_x` is not equal to length of shape of `input_perm`. ValueError: If the same element exists in `input_perm`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]), mindspore.float32) >>> input_perm = (0, 2, 1) >>> output = ops.transpose(input_x, input_perm) >>> print(output) [[[ 1. 4.] [ 2. 5.] [ 3. 6.]] [[ 7. 10.] [ 8. 11.] [ 9. 12.]]] """ return transpose_(input_x, input_perm)
[docs]def scatter_mul(input_x, indices, updates): r""" Updates the value of the input tensor through the multiply operation. Using given values to update tensor value through the mul operation, along with the input indices. This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value. for each `i, ..., j` in `indices.shape`: .. math:: \text{input_x}[\text{indices}[i, ..., j], :] \mathrel{*}= \text{updates}[i, ..., j, :] Inputs of `input_x` and `updates` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Args: input_x (Parameter): The target tensor, with data type of Parameter. The shape is :math:`(N,*)` where :math:`*` means,any number of additional dimensions. indices (Tensor): The index to do min operation whose data type must be mindspore.int32. updates (Tensor): The tensor doing the min operation with `input_x`, the data type is same as `input_x`, the shape is `indices.shape + input_x.shape[1:]`. Returns: Tensor, the updated `input_x`, has the same shape and type as `input_x`. Raises: TypeError: If `use_locking` is not a bool. TypeError: If `indices` is not an int32 or int64. ValueError: If the shape of `updates` is not equal to `indices.shape + input_x.shape[1:]`. RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter is required when data type conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Parameter(Tensor(np.array([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]), mindspore.float32), name="x") >>> indices = Tensor(np.array([0, 1]), mindspore.int32) >>> updates = Tensor(np.array([[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]]), mindspore.float32) >>> output = ops.scatter_mul(input_x, indices, updates) >>> print(output) [[2. 2. 2.] [4. 4. 4.]] >>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized. >>> input_x = Parameter(Tensor(np.array([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]), mindspore.float32), name="x") >>> # for indices = [[0, 1], [1, 1]] >>> # step 1: [0, 1] >>> # input_x[0] = [1.0, 1.0, 1.0] * [1.0, 1.0, 1.0] = [1.0, 1.0, 1.0] >>> # input_x[1] = [2.0, 2.0, 2.0] * [3.0, 3.0, 3.0] = [6.0, 6.0, 6.0] >>> # step 2: [1, 1] >>> # input_x[1] = [6.0, 6.0, 6.0] * [7.0, 7.0, 7.0] = [42.0, 42.0, 42.0] >>> # input_x[1] = [42.0, 42.0, 42.0] * [9.0, 9.0, 9.0] = [378.0, 378.0, 378.0] >>> indices = Tensor(np.array([[0, 1], [1, 1]]), mindspore.int32) >>> updates = Tensor(np.array([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]], ... [[7.0, 7.0, 7.0], [9.0, 9.0, 9.0]]]), mindspore.float32) >>> output = ops.scatter_mul(input_x, indices, updates) >>> print(output) [[ 1. 1. 1.] [378. 378. 378.]] >>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized. >>> input_x = Parameter(Tensor(np.array([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]), mindspore.float32), name="x") >>> # for indices = [[1, 0], [1, 1]] >>> # step 1: [1, 0] >>> # input_x[0] = [1.0, 1.0, 1.0] * [3.0, 3.0, 3.0] = [3.0, 3.0, 3.0] >>> # input_x[1] = [2.0, 2.0, 2.0] * [1.0, 1.0, 1.0] = [2.0, 2.0, 2.0] >>> # step 2: [1, 1] >>> # input_x[1] = [2.0, 2.0, 2.0] * [7.0, 7.0, 7.0] = [14.0, 14.0, 14.0] >>> # input_x[1] = [14.0, 14.0, 14.0] * [9.0, 9.0, 9.0] = [126.0, 126.0, 126.0] >>> indices = Tensor(np.array([[1, 0], [1, 1]]), mindspore.int32) >>> updates = Tensor(np.array([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]], ... [[7.0, 7.0, 7.0], [9.0, 9.0, 9.0]]]), mindspore.float32) >>> output = ops.scatter_mul(input_x, indices, updates) >>> print(output) [[ 3. 3. 3.] [126. 126. 126.]] >>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized. >>> input_x = Parameter(Tensor(np.array([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]), mindspore.float32), name="x") >>> # for indices = [[0, 1], [0, 1]] >>> # step 1: [0, 1] >>> # input_x[0] = [1.0, 1.0, 1.0] * [1.0, 1.0, 1.0] = [1.0, 1.0, 1.0] >>> # input_x[1] = [2.0, 2.0, 2.0] * [3.0, 3.0, 3.0] = [6.0, 6.0, 6.0] >>> # step 2: [0, 1] >>> # input_x[0] = [1.0, 1.0, 1.0] * [7.0, 7.0, 7.0] = [7.0, 7.0, 7.0] >>> # input_x[1] = [6.0, 6.0, 6.0] * [9.0, 9.0, 9.0] = [54.0, 54.0, 54.0] >>> indices = Tensor(np.array([[0, 1], [0, 1]]), mindspore.int32) >>> updates = Tensor(np.array([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]], ... [[7.0, 7.0, 7.0], [9.0, 9.0, 9.0]]]), mindspore.float32) >>> output = ops.scatter_mul(input_x, indices, updates) >>> print(output) [[ 7. 7. 7.] [54. 54. 54.]] """ return scatter_mul_(input_x, indices, updates)
[docs]def scatter_max(input_x, indices, updates): r""" Using given values to update tensor value through the max operation, along with the input indices. This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value. Args: input_x (Parameter): The target tensor, with data type of Parameter. The shape is :math:`(N,*)` where :math:`*` means,any number of additional dimensions. indices (Tensor): The index to do max operation whose data type must be mindspore.int32. updates (Tensor): The tensor doing the max operation with `input_x`, the data type is same as `input_x`, the shape is `indices.shape + x.shape[1:]`. Returns: Tensor, the updated `input_x`, the type and shape same as `input_x`. Raises: TypeError: If `indices` is not an int32 or int64. ValueError: If the shape of `updates` is not equal to `indices.shape + input_x.shape[1:]`. RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter is required when data type conversion of Parameter is not supported. RuntimeError: On the Ascend platform, the input data dimension of `input_x` , `indices` and `updates` is greater than 8 dimensions. Supported Platforms: ``Ascend`` ``CPU`` ``GPU`` Examples: >>> input_x = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32), name="input_x") >>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32) >>> updates = Tensor(np.ones([2, 2, 3]) * 88, mindspore.float32) >>> output = ops.scatter_max(input_x, indices, updates) >>> print(output) [[88. 88. 88.] [88. 88. 88.]] """ return scatter_max_(input_x, indices, updates)
[docs]def scatter_add(input_x, indices, updates): r""" Using given values to update tensor value through the add operation, along with the input indices. This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value. Args: input_x (Parameter): The target tensor, with data type of Parameter. The shape is :math:`(N,*)` where :math:`*` means,any number of additional dimensions. indices (Tensor): The index to do add operation whose data type must be int32 or int64. updates (Tensor): The tensor doing the add operation with `input_x`, the data type is same as `input_x`, the shape is `indices.shape + x.shape[1:]`. Returns: Tensor, the updated `input_x`, has the same shape and type as `input_x`. Raises: TypeError: If `indices` is not an int32 or int64. ValueError: If the shape of `updates` is not equal to `indices.shape + input_x.shape[1:]`. RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter is required when data type conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor, Parameter >>> from mindspore import ops >>> input_x = Parameter(Tensor(np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]), mindspore.float32), name="x") >>> indices = Tensor(np.array([[0, 1], [1, 1]]), mindspore.int32) >>> updates = Tensor(np.array([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]], ... [[7.0, 7.0, 7.0], [9.0, 9.0, 9.0]]]), mindspore.float32) >>> output = ops.scatter_add(input_x, indices, updates) >>> print(output) [[ 1. 1. 1.] [19. 19. 19.]] """ return scatter_add_(input_x, indices, updates)
[docs]def scatter_min(input_x, indices, updates): r""" Using given values to update tensor value through the min operation, along with the input indices. This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value. for each :math:`i, ..., j` in `indices.shape`: .. math:: \text{input_x}[\text{indices}[i, ..., j], :] = min(\text{input_x}[\text{indices}[i, ..., j], :], \text{updates}[i, ..., j, :]) Inputs of `input_x` and `updates` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Args: input_x (Parameter): The target tensor, with data type of Parameter. The shape is :math:`(N,*)` where :math:`*` means,any number of additional dimensions. indices (Tensor): The index to do min operation whose data type must be mindspore.int32 or mindspore.int64. updates (Tensor): The tensor doing the min operation with `input_x`, the data type is same as `input_x`, the shape is `indices.shape + input_x.shape[1:]`. Returns: Tensor, the updated `input_x`, has the same shape and type as `input_x`. Raises: TypeError: If `indices` is not an int32 or an int64. ValueError: If the shape of `updates` is not equal to `indices.shape + input_x.shape[1:]`. RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter is required when data type conversion of Parameter is not supported. RuntimeError: On the Ascend platform, the input data dimension of `input_x` , `indices` and `updates` is greater than 8 dimensions. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor, Parameter >>> from mindspore import ops >>> input_x = Parameter(Tensor(np.zeros((2, 3)), mindspore.float32), name="input_x") >>> indices = Tensor(np.array([1, 0]), mindspore.int32) >>> update = Tensor(np.arange(6).reshape((2, 3)), mindspore.float32) >>> output = ops.scatter_min(input_x, indices, update) >>> print(output) [[0. 0. 0.] [0. 0. 0.]] """ return scatter_min_(input_x, indices, updates)
[docs]def scatter_div(input_x, indices, updates): r""" Using given values to update tensor value through the div operation, along with the input indices. This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value. for each :math:`i, ..., j` in `indices.shape`: .. math:: \text{input_x}[\text{indices}[i, ..., j], :] \mathrel{/}= \text{updates}[i, ..., j, :] Inputs of `input_x` and `updates` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Args: input_x (Parameter): The target tensor, with data type of Parameter. The shape is :math:`(N,*)` where :math:`*` means,any number of additional dimensions. indices (Tensor): The index to do divide operation whose data type must be mindspore.int32 or mindspore.int64. updates (Tensor): The tensor doing the divide operation with `input_x`, the data type is same as `input_x`, the shape is `indices.shape + input_x.shape[1:]`. Returns: Tensor, the updated `input_x`, has the same shape and type as `input_x`. Raises: TypeError: If `indices` is not an int32 or an int64. ValueError: If the shape of `updates` is not equal to `indices.shape + input_x.shape[1:]`. RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter is required when data type conversion of Parameter is not supported. RuntimeError: On the Ascend platform, the input data dimension of `input_x` , `indices` and `updates` is greater than 8 dimensions. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Parameter(Tensor(np.array([[6.0, 6.0, 6.0], [2.0, 2.0, 2.0]]), mindspore.float32), name="x") >>> indices = Tensor(np.array([0, 1]), mindspore.int32) >>> updates = Tensor(np.array([[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]]), mindspore.float32) >>> output = ops.scatter_div(input_x, indices, updates) >>> print(output) [[3. 3. 3.] [1. 1. 1.]] >>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized. >>> input_x = Parameter(Tensor(np.array([[105.0, 105.0, 105.0], ... [315.0, 315.0, 315.0]]), mindspore.float32), name="x") >>> # for indices = [[0, 1], [1, 1]] >>> # step 1: [0, 1] >>> # input_x[0] = [105.0, 105.0, 105.0] / [1.0, 1.0, 1.0] = [105.0, 105.0, 105.0] >>> # input_x[1] = [315.0, 315.0, 315.0] / [3.0, 3.0, 3.0] = [105.0, 105.0, 105.0] >>> # step 2: [1, 1] >>> # input_x[1] = [105.0, 105.0, 105.0] / [5.0, 5.0, 5.0] = [21.0, 21.0, 21.0] >>> # input_x[1] = [21.0, 21.0, 21.0] / [7.0, 7.0, 7.0] = [3.0, 3.0, 3.0] >>> indices = Tensor(np.array([[0, 1], [1, 1]]), mindspore.int32) >>> updates = Tensor(np.array([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]], ... [[5.0, 5.0, 5.0], [7.0, 7.0, 7.0]]]), mindspore.float32) >>> output = ops.scatter_div(input_x, indices, updates) >>> print(output) [[105. 105. 105.] [ 3. 3. 3.]] >>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized. >>> input_x = Parameter(Tensor(np.array([[105.0, 105.0, 105.0], ... [315.0, 315.0, 315.0]]), mindspore.float32), name="x") >>> # for indices = [[1, 0], [1, 1]] >>> # step 1: [1, 0] >>> # input_x[0] = [105.0, 105.0, 105.0] / [3.0, 3.0, 3.0] = [35.0, 35.0, 35.0] >>> # input_x[1] = [315.0, 315.0, 315.0] / [1.0, 1.0, 1.0] = [315.0, 315.0, 315.0] >>> # step 2: [1, 1] >>> # input_x[1] = [315.0, 315.0, 315.0] / [5.0, 5.0, 5.0] = [63.0 63.0 63.0] >>> # input_x[1] = [63.0 63.0 63.0] / [7.0, 7.0, 7.0] = [9.0, 9.0, 9.0] >>> indices = Tensor(np.array([[1, 0], [1, 1]]), mindspore.int32) >>> updates = Tensor(np.array([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]], ... [[5.0, 5.0, 5.0], [7.0, 7.0, 7.0]]]), mindspore.float32) >>> output = ops.scatter_div(input_x, indices, updates) >>> print(output) [[35. 35. 35.] [ 9. 9. 9.]] """ return scatter_div_(input_x, indices, updates)
[docs]def scatter_nd(indices, updates, shape): r""" Scatters a tensor into a new tensor depending on the specified indices. Creates an empty tensor with the given `shape`, and set values by scattering the update tensor depending on indices. The empty tensor has rank :math:`P` and `indices` has rank :math:`Q`. The `shape` is :math:`(s_0, s_1, ..., s_{P-1})`, where :math:`P \ge 1`. `indices` has shape :math:`(i_0, i_1, ..., i_{Q-2}, N)`, where :math:`Q \ge 2` and :math:`N \le P`. The last dimension of `indices` (with length :math:`N` ) indicates slices along the :math:`N` th dimension of the empty tensor. `updates` is a tensor of rank :math:`Q-1+P-N`, and its shape is :math:`(i_0, i_1, ..., i_{Q-2}, s_N, s_{N+1}, ..., s_{P-1})`. If `indices` contains duplicates, the duplicate `updates` are summed. The following figure shows the calculation process of inserting two new value matrices into the first dimension with rank-3: .. image:: ScatterNd.png Args: indices (Tensor): Define the index of scattering in the new tensor with int32 or int64 data type. The rank of `indices` must be at least 2 and `indices.shape[-1] <= len(shape)`. updates (Tensor): Define the source Tensor to be updated. It has shape `indices.shape[:-1] + shape[indices.shape[-1]:]`. shape (tuple[int]): Define the shape of the output tensor, has the same data type as indices. `shape` can not be empty, and the elements in `shape` must be greater than or equal to 1. Returns: Tensor, the new tensor, has the same type as `update` and the same shape as `shape`. Raises: TypeError: If `shape` is not a tuple. ValueError: If any element of `shape` is less than 1. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> indices = Tensor(np.array([[0], [2]]), mindspore.int32) >>> updates = Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2], ... [3, 3, 3, 3], [4, 4, 4, 4]], ... [[1, 1, 1, 1], [2, 2, 2, 2], ... [3, 3, 3, 3], [4, 4, 4, 4]]]), mindspore.float32) >>> shape = (4, 4, 4) >>> output = ops.scatter_nd(indices, updates, shape) >>> print(output) [[[1. 1. 1. 1.] [2. 2. 2. 2.] [3. 3. 3. 3.] [4. 4. 4. 4.]] [[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]] [[1. 1. 1. 1.] [2. 2. 2. 2.] [3. 3. 3. 3.] [4. 4. 4. 4.]] [[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]]] >>> indices = Tensor(np.array([[0, 1], [1, 1]]), mindspore.int32) >>> updates = Tensor(np.array([3.2, 1.1]), mindspore.float32) >>> shape = (3, 3) >>> output = ops.scatter_nd(indices, updates, shape) >>> # In order to facilitate understanding, explain the operator pseudo-operation process step by step: >>> # Step 1: Generate an empty Tensor of the specified shape according to the shape >>> # [ >>> # [0. 0. 0.] >>> # [0. 0. 0.] >>> # [0. 0. 0.] >>> # ] >>> # Step 2: Modify the data at the specified location according to the indicators >>> # 0th row of indices is [0, 1], 0th row of updates is 3.2. >>> # means that the empty tensor in the 0th row and 1st col set to 3.2 >>> # [ >>> # [0. 3.2. 0.] >>> # [0. 0. 0.] >>> # [0. 0. 0.] >>> # ] >>> # 1th row of indices is [1, 1], 1th row of updates is 1.1. >>> # means that the empty tensor in the 1th row and 1st col set to 1.1 >>> # [ >>> # [0. 3.2. 0.] >>> # [0. 1.1 0.] >>> # [0. 0. 0.] >>> # ] >>> # The final result is as follows: >>> print(output) [[0. 3.2 0.] [0. 1.1 0.] [0. 0. 0.]] """ return scatter_nd_(indices, updates, shape)
[docs]def scatter_update(input_x, indices, updates): r""" Updates tensor values by using input indices and value. Using given values to update tensor value, along with the input indices. for each `i, ..., j` in `indices.shape`: .. math:: \text{input_x}[\text{indices}[i, ..., j], :] = \text{updates}[i, ..., j, :] Inputs of `input_x` and `updates` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Args: input_x (Parameter): The target tensor, with data type of Parameter. The shape is :math:`(N,*)` where :math:`*` means,any number of additional dimensions. indices (Tensor): The index of input tensor. With int32 or int64 data type. If there are duplicates in indices, the order for updating is undefined. updates (Tensor): The tensor to update the input tensor, has the same type as input, and updates.shape = indices.shape + input_x.shape[1:]. Returns: Tensor, has the same shape and type as `input_x`. Raises: TypeError: If `indices` is not an int32 or an int64. ValueError: If the shape of `updates` is not equal to `indices.shape + input_x.shape[1:]`. RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter is required when data type conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> np_x = np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]) >>> input_x = mindspore.Parameter(Tensor(np_x, mindspore.float32), name="x") >>> indices = Tensor(np.array([0, 1]), mindspore.int32) >>> np_updates = np.array([[2.0, 1.2, 1.0], [3.0, 1.2, 1.0]]) >>> updates = Tensor(np_updates, mindspore.float32) >>> output = ops.scatter_update(input_x, indices, updates) >>> print(output) [[2. 1.2 1.] [3. 1.2 1.]] """ scatter_update_inner = _get_cache_prim(P.ScatterUpdate)() return scatter_update_inner(input_x, indices, updates)
[docs]def scatter_nd_add(input_x, indices, updates, use_locking=False): r""" Applies sparse addition to individual values or slices in a tensor. Using given values to update tensor value through the add operation, along with the input indices. This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value. `input_x` has rank P and `indices` has rank Q where `Q >= 2`. `indices` has shape :math:`(i_0, i_1, ..., i_{Q-2}, N)` where `N <= P`. The last dimension of `indices` (with length `N` ) indicates slices along the `N` th dimension of `input_x`. `updates` is a tensor of rank `Q-1+P-N`. Its shape is: :math:`(i_0, i_1, ..., i_{Q-2}, x\_shape_N, ..., x\_shape_{P-1})`. Args: input_x (Parameter): The target tensor, with data type of Parameter. The shape is :math:`(N,*)` where :math:`*` means,any number of additional dimensions. indices (Tensor): The index to do min operation whose data type must be mindspore.int32 or mindspore.int64. The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`. updates (Tensor): The tensor doing the addition operation with `input_x`, the data type is same as `input_x`, the shape is `indices.shape[:-1] + x.shape[indices.shape[-1]:]`. use_locking (bool): Whether to protect the assignment by a lock. Default: False. Returns: Tensor, the updated `input_x`, has the same shape and type as `input_x`. Raises: TypeError: If the dtype of `use_locking` is not bool. TypeError: If the dtype of `indices` is not int32 or int64. TypeError: If dtype of `input_x` and `updates` are not the same. ValueError: If the shape of `updates` is not equal to `indices.shape[:-1] + x.shape[indices.shape[-1]:]`. RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter is required when data type conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x") >>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32) >>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32) >>> output = ops.scatter_nd_add(input_x, indices, updates, False) >>> print(output) [ 1. 10. 9. 4. 12. 6. 7. 17.] >>> input_x = Parameter(Tensor(np.zeros((4, 4, 4)), mindspore.int32)) >>> indices = Tensor(np.array([[0], [2]]), mindspore.int32) >>> updates = Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]], ... [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]]), mindspore.int32) >>> output = ops.scatter_nd_add(input_x, indices, updates, False) >>> print(output) [[[1 1 1 1] [2 2 2 2] [3 3 3 3] [4 4 4 4]] [[0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0]] [[5 5 5 5] [6 6 6 6] [7 7 7 7] [8 8 8 8]] [[0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0]]] """ scatter_nd_add_inner = _get_cache_prim(P.ScatterNdAdd)(use_locking) return scatter_nd_add_inner(input_x, indices, updates)
[docs]def scatter_nd_sub(input_x, indices, updates, use_locking=False): r""" Applies sparse subtraction to individual values or slices in a tensor. Using given values to update tensor value through the subtraction operation, along with the input indices. This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value. `input_x` has rank P and `indices` has rank Q where `Q >= 2`. `indices` has shape :math:`(i_0, i_1, ..., i_{Q-2}, N)` where `N <= P`. The last dimension of `indices` (with length `N` ) indicates slices along the `N` th dimension of `input_x`. `updates` is a tensor of rank `Q-1+P-N`. Its shape is: :math:`(i_0, i_1, ..., i_{Q-2}, x\_shape_N, ..., x\_shape_{P-1})`. Args: input_x (Parameter): The target tensor, with data type of Parameter. The shape is :math:`(N,*)` where :math:`*` means,any number of additional dimensions. indices (Tensor): The index of input tensor, with int32 or int64 data type. The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`. updates (Tensor): The tensor doing the subtraction operation with `input_x`, has the same type as input. The shape is `indices.shape[:-1] + x.shape[indices.shape[-1]:]`. use_locking (bool): Whether to protect the assignment by a lock. Default: False. Returns: Tensor, has the same shape and type as `input_x`. Raises: TypeError: If the dtype of `use_locking` is not bool. TypeError: If the dtype of `indices` is not int32 or int64. TypeError: If dtype of `input_x` and `updates` are not the same. ValueError: If the shape of `updates` is not equal to `indices.shape[:-1] + x.shape[indices.shape[-1]:]`. RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter is required when data type conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x") >>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32) >>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32) >>> output = ops.scatter_nd_sub(input_x, indices, updates, False) >>> print(output) [ 1. -6. -3. 4. -2. 6. 7. -1.] >>> input_x = Parameter(Tensor(np.zeros((4, 4, 4)), mindspore.int32)) >>> indices = Tensor(np.array([[0], [2]]), mindspore.int32) >>> updates = Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]], ... [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]]), mindspore.int32) >>> output = ops.scatter_nd_sub(input_x, indices, updates, False) >>> print(output) [[[-1 -1 -1 -1] [-2 -2 -2 -2] [-3 -3 -3 -3] [-4 -4 -4 -4]] [[ 0 0 0 0] [ 0 0 0 0] [ 0 0 0 0] [ 0 0 0 0]] [[-5 -5 -5 -5] [-6 -6 -6 -6] [-7 -7 -7 -7] [-8 -8 -8 -8]] [[ 0 0 0 0] [ 0 0 0 0] [ 0 0 0 0] [ 0 0 0 0]]] """ scatter_nd_sub_inner = _get_cache_prim(P.ScatterNdSub)(use_locking) return scatter_nd_sub_inner(input_x, indices, updates)
[docs]def scatter_nd_mul(input_x, indices, updates, use_locking=False): r""" Applies sparse multiplication to individual values or slices in a tensor. Using given values to update parameter value through the multiplication operation, along with the input indices. This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value. `input_x` has rank P and `indices` has rank Q, where `Q >= 2`. `indices` has shape :math:`(i_0, i_1, ..., i_{Q-2}, N)` where `N <= P`. The last dimension of `indices` (with length `N` ) indicates slices along the `N` th dimension of `input_x`. `updates` is a tensor of rank `Q-1+P-N`. Its shape is: :math:`(i_0, i_1, ..., i_{Q-2}, x\_shape_N, ..., x\_shape_{P-1})`. Args: input_x (Parameter): The target tensor, with data type of Parameter. The shape is :math:`(N,*)`, where :math:`*` means any number of additional dimensions. indices (Tensor): The index to do multiplication operation whose data type must be mindspore.int32 or mindspore.int64. The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`. updates (Tensor): The tensor to do the multiplication operation with `input_x`. The data type is same as `input_x`, and the shape is `indices.shape[:-1] + x.shape[indices.shape[-1]:]`. use_locking (bool): Whether to protect the assignment by a lock. Default: False. Returns: Tensor, the updated `input_x`, has the same shape and type as `input_x`. Raises: TypeError: If the dtype of `use_locking` is not bool. TypeError: If the dtype of `indices` is not int32 or int64. TypeError: If dtype of `input_x` and `updates` are not the same. ValueError: If the shape of `updates` is not equal to `indices.shape[:-1] + x.shape[indices.shape[-1]:]`. RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter is required when data type conversion of Parameter is not supported. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x") >>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32) >>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32) >>> output = ops.scatter_nd_mul(input_x, indices, updates) >>> print(output) [ 1. 16. 18. 4. 35. 6. 7. 72.] >>> input_x = Parameter(Tensor(np.ones((4, 4, 4)), mindspore.int32)) >>> indices = Tensor(np.array([[0], [2]]), mindspore.int32) >>> updates = Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]], ... [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]]), mindspore.int32) >>> output = ops.scatter_nd_mul(input_x, indices, updates) >>> print(output) [[[1 1 1 1] [2 2 2 2] [3 3 3 3] [4 4 4 4]] [[1 1 1 1] [1 1 1 1] [1 1 1 1] [1 1 1 1]] [[5 5 5 5] [6 6 6 6] [7 7 7 7] [8 8 8 8]] [[1 1 1 1] [1 1 1 1] [1 1 1 1] [1 1 1 1]]] """ scatter_nd_mul_inner = _get_cache_prim(ScatterNdMul)(use_locking) return scatter_nd_mul_inner(input_x, indices, updates)
[docs]def scatter_nd_div(input_x, indices, updates, use_locking=False): r""" Applying sparse division to individual values or slices in a tensor. Using given values to update tensor value through the div operation, along with the input indices. This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value. `input_x` has rank P and `indices` has rank Q, where `Q >= 2`. `indices` has shape :math:`(i_0, i_1, ..., i_{Q-2}, N)` where `N <= P`. The last dimension of `indices` (with length `N` ) indicates slices along the `N` th dimension of `input_x`. `updates` is a tensor of rank `Q-1+P-N`. Its shape is: :math:`(i_0, i_1, ..., i_{Q-2}, x\_shape_N, ..., x\_shape_{P-1})`. Args: input_x (Parameter): The target tensor, with data type of Parameter. The shape is :math:`(N,*)`, where :math:`*` means any number of additional dimensions. indices (Tensor): The index to do div operation whose data type must be mindspore.int32 or mindspore.int64. The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`. updates (Tensor): The tensor to do the div operation with `input_x`. The data type is same as `input_x`, and the shape is `indices.shape[:-1] + x.shape[indices.shape[-1]:]`. use_locking (bool): Whether to protect the assignment by a lock. Default: False. Returns: Tensor, the updated `input_x`, has the same shape and type as `input_x`. Raises: TypeError: If the dtype of `use_locking` is not bool. TypeError: If the dtype of `indices` is not int32 or int64. TypeError: If dtype of `input_x` and `updates` are not the same. ValueError: If the shape of `updates` is not equal to `indices.shape[:-1] + x.shape[indices.shape[-1]:]`. RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter is required when data type conversion of Parameter is not supported. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x") >>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32) >>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32) >>> output = ops.scatter_nd_div(input_x, indices, updates, False) >>> print(output) [1. 0.25 0.5 4. 0.71428573 6. 7. 0.8888889 ] >>> input_x = Parameter(Tensor(np.ones((4, 4, 4)), mindspore.float32)) >>> indices = Tensor(np.array([[0], [2]]), mindspore.int32) >>> updates = Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]], ... [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]]), mindspore.float32) >>> output = ops.scatter_nd_div(input_x, indices, updates, False) >>> print(output) [[[1. 1. 1. 1. ] [0.5 0.5 0.5 0.5 ] [0.33333334 0.33333334 0.33333334 0.33333334] [0.25 0.25 0.25 0.25 ]] [[1. 1. 1. 1. ] [1. 1. 1. 1. ] [1. 1. 1. 1. ] [1. 1. 1. 1. ]] [[0.2 0.2 0.2 0.2 ] [0.16666667 0.16666667 0.16666667 0.16666667] [0.14285715 0.14285715 0.14285715 0.14285715] [0.125 0.125 0.125 0.125 ]] [[1. 1. 1. 1. ] [1. 1. 1. 1. ] [1. 1. 1. 1. ] [1. 1. 1. 1. ]]] """ scatter_nd_div_inner = _get_cache_prim(P.ScatterNdDiv)(use_locking) return scatter_nd_div_inner(input_x, indices, updates)
[docs]def scatter_nd_max(input_x, indices, updates, use_locking=False): r""" Applying sparse maximum to individual values or slices in a tensor. Using given values to update parameter value through the max operation, along with the input indices. This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value. `input_x` has rank P and `indices` has rank Q where `Q >= 2`. `indices` has shape :math:`(i_0, i_1, ..., i_{Q-2}, N)` where `N <= P`. The last dimension of `indices` (with length `N` ) indicates slices along the `N` th dimension of `input_x`. `updates` is a tensor of rank `Q-1+P-N`. Its shape is: :math:`(i_0, i_1, ..., i_{Q-2}, x\_shape_N, ..., x\_shape_{P-1})`. Args: input_x (Parameter): The target tensor, with data type of Parameter. The shape is :math:`(N,*)`, where :math:`*` means any number of additional dimensions. indices (Tensor): The index to do maximum operation whose data type must be mindspore.int32 or mindspore.int64. The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`. updates (Tensor): The tensor to do the max operation with `input_x`. The data type is same as `input_x`, and the shape is `indices.shape[:-1] + x.shape[indices.shape[-1]:]`. use_locking (bool): Whether to protect the assignment by a lock. Default: False. Returns: Tensor, the updated `input_x`, has the same shape and type as `input_x`. Raises: TypeError: If the dtype of `use_locking` is not bool. TypeError: If the dtype of `indices` is not int32 or int64. TypeError: If dtype of `input_x` and `updates` are not the same. ValueError: If the shape of `updates` is not equal to `indices.shape[:-1] + x.shape[indices.shape[-1]:]`. RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter is required when data type conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x") >>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32) >>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32) >>> output = ops.scatter_nd_max(input_x, indices, updates, False) >>> print(output) [1. 8. 6. 4. 7. 6. 7. 9.] >>> input_x = Parameter(Tensor(np.ones((4, 4, 4)), mindspore.int32)) >>> indices = Tensor(np.array([[0], [2]]), mindspore.int32) >>> updates = Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]], ... [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]]), mindspore.int32) >>> output = ops.scatter_nd_max(input_x, indices, updates, False) >>> print(output) [[[1 1 1 1] [2 2 2 2] [3 3 3 3] [4 4 4 4]] [[1 1 1 1] [1 1 1 1] [1 1 1 1] [1 1 1 1]] [[5 5 5 5] [6 6 6 6] [7 7 7 7] [8 8 8 8]] [[1 1 1 1] [1 1 1 1] [1 1 1 1] [1 1 1 1]]] """ scatter_nd_max_inner = _get_cache_prim(ScatterNdMax)(use_locking) return scatter_nd_max_inner(input_x, indices, updates)
[docs]def scatter_nd_min(input_x, indices, updates, use_locking=False): r""" Applying sparse minimum to individual values or slices in a tensor. Using given values to update tensor value through the min operation, along with the input indices. This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value. `input_x` has rank P and `indices` has rank Q where `Q >= 2`. `indices` has shape :math:`(i_0, i_1, ..., i_{Q-2}, N)` where `N <= P`. The last dimension of `indices` (with length `N` ) indicates slices along the `N` th dimension of `input_x`. `updates` is a tensor of rank `Q-1+P-N`. Its shape is: :math:`(i_0, i_1, ..., i_{Q-2}, x\_shape_N, ..., x\_shape_{P-1})`. Args: input_x (Parameter): The target tensor, with data type of Parameter. The shape is :math:`(N,*)`, where :math:`*` means any number of additional dimensions. indices (Tensor): The index to do min operation whose data type must be mindspore.int32 or mindspore.int64. The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`. updates (Tensor): The tensor to do the min operation with `input_x`. The data type is same as `input_x`, and the shape is `indices.shape[:-1] + x.shape[indices.shape[-1]:]`. use_locking (bool): Whether to protect the assignment by a lock. Default: False. Returns: Tensor, the updated `input_x`, has the same shape and type as `input_x`. Raises: TypeError: If the dtype of `use_locking` is not bool. TypeError: If the dtype of `indices` is not int32 or int64. TypeError: If dtype of `input_x` and `updates` are not the same. ValueError: If the shape of `updates` is not equal to `indices.shape[:-1] + x.shape[indices.shape[-1]:]`. RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter is required when data type conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Parameter(Tensor(np.ones(8) * 10, mindspore.float32), name="x") >>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32) >>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32) >>> output = ops.scatter_nd_min(input_x, indices, updates, False) >>> print(output) [10. 8. 6. 10. 7. 10. 10. 9.] >>> input_x = Parameter(Tensor(np.ones((4, 4, 4)) * 10, mindspore.int32)) >>> indices = Tensor(np.array([[0], [2]]), mindspore.int32) >>> updates = Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]], ... [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]]), mindspore.int32) >>> output = ops.scatter_nd_min(input_x, indices, updates, False) >>> print(output) [[[ 1 1 1 1] [ 2 2 2 2] [ 3 3 3 3] [ 4 4 4 4]] [[10 10 10 10] [10 10 10 10] [10 10 10 10] [10 10 10 10]] [[ 5 5 5 5] [ 6 6 6 6] [ 7 7 7 7] [ 8 8 8 8]] [[10 10 10 10] [10 10 10 10] [10 10 10 10] [10 10 10 10]]] """ scatter_nd_min_inner = _get_cache_prim(P.ScatterNdMin)(use_locking) return scatter_nd_min_inner(input_x, indices, updates)
[docs]def gather(input_params, input_indices, axis): r""" Returns the slice of the input tensor corresponding to the elements of `input_indices` on the specified `axis`. The following figure shows the calculation process of Gather commonly: .. image:: Gather.png where params represents the input `input_params`, and indices represents the index to be sliced `input_indices`. .. note:: 1. The value of input_indices must be in the range of `[0, input_param.shape[axis])`, the result is undefined out of range. 2. The data type of input_params cannot be `bool_ <https://www.mindspore.cn/docs/en/r1.10/api_python/mindspore.html#mindspore.dtype>`_ on Ascend platform currently. Args: input_params (Tensor): The original Tensor. The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. input_indices (Tensor): Index tensor to be sliced, the shape of tensor is :math:`(y_1, y_2, ..., y_S)`. Specifies the indices of elements of the original Tensor. The data type can be int32 or int64. axis (int): Specifies the dimension index to gather indices. Returns: Tensor, the shape of tensor is :math:`input\_params.shape[:axis] + input\_indices.shape + input\_params.shape[axis + 1:]`. Raises: TypeError: If `axis` is not an int. TypeError: If `input_params` is not a tensor. TypeError: If `input_indices` is not a tensor of type int. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> # case1: input_indices is a Tensor with shape (5, ). >>> input_params = Tensor(np.array([1, 2, 3, 4, 5, 6, 7]), mindspore.float32) >>> input_indices = Tensor(np.array([0, 2, 4, 2, 6]), mindspore.int32) >>> axis = 0 >>> output = ops.gather(input_params, input_indices, axis) >>> print(output) [1. 3. 5. 3. 7.] >>> # case2: input_indices is a Tensor with shape (2, 2). When the input_params has one dimension, >>> # the output shape is equal to the input_indices shape. >>> input_indices = Tensor(np.array([[0, 2], [2, 6]]), mindspore.int32) >>> axis = 0 >>> output = ops.gather(input_params, input_indices, axis) >>> print(output) [[ 1. 3.] [ 3. 7.]] >>> # case3: input_indices is a Tensor with shape (2, ) and >>> # input_params is a Tensor with shape (3, 4) and axis is 0. >>> input_params = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]), mindspore.float32) >>> input_indices = Tensor(np.array([0, 2]), mindspore.int32) >>> axis = 0 >>> output = ops.gather(input_params, input_indices, axis) >>> print(output) [[1. 2. 3. 4.] [9. 10. 11. 12.]] >>> # case4: input_indices is a Tensor with shape (2, ) and >>> # input_params is a Tensor with shape (3, 4) and axis is 1. >>> input_params = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]), mindspore.float32) >>> input_indices = Tensor(np.array([0, 2]), mindspore.int32) >>> axis = 1 >>> output = ops.gather(input_params, input_indices, axis) >>> print(output) [[1. 3.] [5. 7.] [9. 11.]] """ return gather_(input_params, input_indices, axis)
[docs]def gather_d(x, dim, index): """ Gathers elements along an axis specified by dim. Refer to :func:`mindspore.ops.gather_elements` for more detail. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.int32) >>> index = Tensor(np.array([[0, 0], [1, 0]]), mindspore.int32) >>> dim = 1 >>> output = ops.gather_d(x, dim, index) >>> print(output) [[1 1] [4 3]] """ return gather_d_(x, dim, index)
[docs]def gather_elements(x, dim, index): """ Gathers elements along an axis specified by dim. For a 3-D tensor, the output is: .. code-block:: output[i][j][k] = x[index[i][j][k]][j][k] # if dim == 0 output[i][j][k] = x[i][index[i][j][k]][k] # if dim == 1 output[i][j][k] = x[i][j][index[i][j][k]] # if dim == 2 `x` and `index` have the same length of dimensions, and all dimensions except `dim` have the same size. If `dim` = i, `x` is an n-D tensor with shape :math:`(z_0, z_1, ..., z_i, ..., z_{n-1})`, the `index` must be an n-D tensor with shape :math:`(z_0, z_1, ..., y, ..., z_{n-1})` where `y`>=1 and the output will have the same shape with `index`. Args: x (Tensor): The input tensor. dim (int): The axis along which to index. It must be int32 or int64. The value range is [-x.ndim, x.ndim). index (Tensor): The indices of elements to gather. It can be one of the following data types: int32, int64. The value range of each index element is [-x.shape(dim), x.shape(dim)). Returns: Tensor, has the same shape as index tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_{n-1})`, and has the same data type with `x`. Raises: TypeError: If dtype of `dim` or `index` is neither int32 nor int64. ValueError: If length of shape of `x` is not equal to length of shape of `index`. ValueError: If the size of the dimension except `dim` is not equal between `x` and `index`. ValueError: If the value of `dim` is not in the expected range. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.int32) >>> index = Tensor(np.array([[0, 0], [1, 0]]), mindspore.int32) >>> dim = 1 >>> output = mindspore.ops.gather_elements(x, dim, index) >>> print(output) [[1 1] [4 3]] """ return gather_d_(x, dim, index)
[docs]def gather_nd(input_x, indices): r""" Gathers slices from a tensor by indices. Using given indices to gather slices from a tensor with a specified shape. `indices` is an K-dimensional integer tensor. Supposes it as a (K-1)-dimensional tensor and each element of it defines a slice of `input_x`: .. math:: output[(i_0, ..., i_{K-2})] = input\_x[indices[(i_0, ..., i_{K-2})]] The last dimension of `indices` can not more than the rank of `input_x`: :math:`indices.shape[-1] <= input\_x.rank`. Args: input_x (Tensor): The target tensor to gather values. The shape is :math:`(N,*)` where :math:`*` means,any number of additional dimensions. indices (Tensor): The index tensor, with int32 or int64 data type. Returns: Tensor, has the same type as `input_x` and the shape is :math:`indices\_shape[:-1] + input\_x\_shape[indices\_shape[-1]:]`. Raises: ValueError: If length of shape of `input_x` is less than the last dimension of `indices`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) >>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32) >>> output = ops.gather_nd(input_x, indices) >>> print(output) [-0.1 0.5] """ return gather_nd_(input_x, indices)
[docs]def tensor_scatter_add(input_x, indices, updates): """ Creates a new tensor by adding the values from the positions in `input_x` indicated by `indices`, with values from `updates`. When multiple values are given for the same index, the updated result will be the sum of all values. This operation is almost equivalent to using ScatterNdAdd, except that the updates are applied on output `Tensor` instead of input `Parameter`. The last axis of `indices` is the depth of each index vectors. For each index vector, there must be a corresponding value in `updates`. The shape of `updates` should be equal to the shape of `input_x[indices]`. For more details, see use cases. Note: On GPU, if some values of the `indices` are out of bound, instead of raising an index error, the corresponding `updates` will not be updated to self tensor. On CPU, if some values of the `indices` are out of bound, raising an index error. On Ascend, out of bound checking is not supported, if some values of the `indices` are out of bound, unknown errors may be caused. Args: input_x (Tensor): The target tensor. The dimension of input_x must be no less than indices.shape[-1]. indices (Tensor): The index of input tensor whose data type is int32 or int64. The rank must be at least 2. updates (Tensor): The tensor to update the input tensor, has the same type as input, and updates. Shape should be equal to indices.shape[:-1] + input_x.shape[indices.shape[-1]:]. Returns: Tensor, has the same shape and type as `input_x`. Raises: TypeError: If dtype of `indices` is neither int32 nor int64. ValueError: If length of shape of `input_x` is less than the last dimension of shape of `indices`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, nn >>> from mindspore import ops >>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) >>> indices = Tensor(np.array([[0, 0], [0, 0]]), mindspore.int32) >>> updates = Tensor(np.array([1.0, 2.2]), mindspore.float32) >>> output = ops.tensor_scatter_add(input_x, indices, updates) >>> print(output) [[ 3.1 0.3 3.6] [ 0.4 0.5 -3.2]] """ return tensor_scatter_add_(input_x, indices, updates)
[docs]def tensor_scatter_sub(input_x, indices, updates): """ Creates a new tensor by subtracting the values from the positions in `input_x` indicated by `indices`, with values from `updates`. When multiple values are provided for the same index, the result of the update will be to subtract these values respectively. This operation is almost equivalent to using :class:`mindspore.ops.ScatterNdSub` , except that the updates are applied on output `Tensor` instead of input `Parameter`. The last axis of `indices` is the depth of each index vectors. For each index vector, there must be a corresponding value in `updates`. The shape of `updates` should be equal to the shape of `input_x[indices]`. For more details, see use cases. Note: On GPU, if some values of the `indices` are out of bound, instead of raising an index error, the corresponding `updates` will not be updated to self tensor. On CPU, if some values of the `indices` are out of bound, raising an index error. On Ascend, out of bound checking is not supported, if some values of the `indices` are out of bound, unknown errors may be caused. Args: input_x (Tensor): The target tensor. The dimension of input_x must be no less than indices.shape[-1]. indices (Tensor): The index of input tensor whose data type is int32 or int64. The rank must be at least 2. updates (Tensor): The tensor to update the input tensor, has the same type as input, and updates.shape should be equal to indices.shape[:-1] + input_x.shape[indices.shape[-1]:]. Returns: Tensor, has the same shape and type as `input_x`. Raises: TypeError: If dtype of `indices` is neither int32 nor int64. ValueError: If length of shape of `input_x` is less than the last dimension of shape of `indices`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> from mindspore import ops >>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) >>> indices = Tensor(np.array([[0, 0], [0, 0]]), mindspore.int32) >>> updates = Tensor(np.array([1.0, 2.2]), mindspore.float32) >>> output = ops.tensor_scatter_sub(input_x, indices, updates) >>> print(output) [[-3.3000002 0.3 3.6 ] [ 0.4 0.5 -3.2 ]] """ return tensor_scatter_sub_(input_x, indices, updates)
def tensor_scatter_max(input_x, indices, updates): """ By comparing the value at the position indicated by `indices` in `x` with the value in the `updates`, the value at the index will eventually be equal to the largest one to create a new tensor. The last axis of the index is the depth of each index vector. For each index vector, there must be a corresponding value in `updates`. The shape of `updates` should be equal to the shape of input_x[indices]. For more details, see use cases. Note: If some values of the `indices` are out of bound, instead of raising an index error, the corresponding `updates` will not be updated to `input_x`. Args: input_x (Tensor): The target tensor. The dimension of input_x must be no less than indices.shape[-1]. indices (Tensor): The index of input tensor whose data type is int32 or int64. The rank must be at least 2. updates (Tensor): The tensor to update the input tensor, has the same type as input, and updates.shape should be equal to indices.shape[:-1] + input_x.shape[indices.shape[-1]:]. Returns: Tensor, has the same shape and type as `input_x`. Raises: TypeError: If dtype of `indices` is neither int32 nor int64. ValueError: If length of shape of `input_x` is less than the last dimension of shape of `indices`. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) >>> indices = Tensor(np.array([[0, 0], [0, 0]]), mindspore.int32) >>> updates = Tensor(np.array([1.0, 2.2]), mindspore.float32) >>> # Next, demonstrate the approximate operation process of this operator: >>> # 1, indices[0] = [0, 0], indices[1] = [0, 0] >>> # 2, And input_x[0, 0] = -0.1 >>> # 3, So input_x[indices] = [-0.1, -0.1] >>> # 4, Satisfy the above formula: input_x[indices].shape=(2) == updates.shape=(2) >>> output = ops.tensor_scatter_max(input_x, indices, updates) >>> # 5, Perform the max operation for the first time: >>> # first_input_x = Max(input_x[0][0], updates[0]) = [[1.0, 0.3, 3.6], [0.4, 0.5, -3.2]] >>> # 6, Perform the max operation for the second time: >>> # second_input_x = Max(input_x[0][0], updates[1]) = [[2.2, 0.3, 3.6], [0.4, 0.5, -3.2]] >>> print(output) [[ 2.2 0.3 3.6] [ 0.4 0.5 -3.2]] """ return tensor_scatter_max_(input_x, indices, updates) def tensor_scatter_min(input_x, indices, updates): """ By comparing the value at the position indicated by `indices` in `input_x` with the value in the `updates`, the value at the index will eventually be equal to the smallest one to create a new tensor. The last axis of the index is the depth of each index vector. For each index vector, there must be a corresponding value in `updates`. The shape of `updates` should be equal to the shape of `input_x[indices]`. For more details, see case below. Note: If some values of the `indices` are out of range, instead of raising an index error, the corresponding `updates` will not be hw to `input_x`. Args: input_x (Tensor): The input tensor. The dimension of input_x must be no less than indices.shape[-1]. indices (Tensor): The index of input tensor whose data type is int32 or int64. The rank must be at least 2. updates (Tensor): The tensor to update the input tensor, has the same type as input, and updates.shape should be equal to indices.shape[:-1] + input_x.shape[indices.shape[-1]:]. Returns: Tensor, has the same shape and type as `input_x`. Raises: TypeError: If dtype of `indices` is neither int32 nor int64. ValueError: If length of shape of `input_x` is less than the last dimension of shape of `indices`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> from mindspore import ops >>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) >>> indices = Tensor(np.array([[0, 0], [0, 0]]), mindspore.int32) >>> updates = Tensor(np.array([1.0, 2.2]), mindspore.float32) >>> output = ops.tensor_scatter_min(input_x, indices, updates) >>> print(output) [[ -0.1 0.3 3.6] [ 0.4 0.5 -3.2]] """ return tensor_scatter_min_(input_x, indices, updates)
[docs]def tensor_scatter_elements(input_x, indices, updates, axis=0, reduction="none"): """ Updates the value of the input tensor through the reduction operation. tensor_scatter_elements takes three inputs data, updates, and indices of the same rank r >= 1, an optional attribute axis that identifies an axis of data (default is 0), and another optional attribute reduction that identifies reduction operation. When reduction is set to "none", the update value will be assigned to the output value according to the indices. When reduction is set to "add", the update value will be added to the output value according to the indices. For a 3-D tensor, the output is: .. code-block:: output[indices[i][j][k]][j][k] = updates[i][j][k] # if axis == 0, reduction == "none" output[i][indices[i][j][k]][k] += updates[i][j][k] # if axis == 1, reduction == "add" output[i][j][indices[i][j][k]] = updates[i][j][k] # if axis == 2, reduction == "none" .. warning:: - The order in which updates are applied is nondeterministic, meaning that if there are multiple index vectors in `indices` that correspond to the same position, the value of that position in the output will be nondeterministic. - On Ascend, the reduction only support set to "none" for now. - On Ascend, the data type of `input_x` must be float16 or float32. .. note:: If some values of the `indices` are out of bound, instead of raising an index error, the corresponding `updates` will not be updated to `input_x`. Args: input_x (Tensor): The target tensor. The shape is :math:`(N,*)` where :math:`*` means,any number of additional dimensions. indices (Tensor): The index to do add operation whose data type must be mindspore.int32 or mindspore.int64. Same rank as input_x. And accepted range is [-s, s) where s is the size along axis. updates (Tensor): The tensor doing the add operation with `input_x`, has the same type as input_x, and update.shape should be equal to indices.shape. axis (int): Which axis to scatter, default is 0. Accepted range is [-r, r) where r = rank(input_x). reduction (str): Which reduction operation to scatter, default is "none". Other option: "add". Returns: Tensor, has the same shape and type as `input_x`. Raises: TypeError: If `indices` is neither int32 nor int64. ValueError: If anyone of the rank among `input_x`, `indices` and `updates` less than 1. ValueError: If the shape of `updates` is not equal to the shape of `indices`. ValueError: If the rank of `updates` is not equal to the rank of `input_x`. RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter is required when data type conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Parameter(Tensor(np.array([[1, 2, 3, 4, 5]]), mindspore.float32), name="x") >>> indices = Tensor(np.array([[2, 4]]), mindspore.int32) >>> updates = Tensor(np.array([[8, 8]]), mindspore.float32) >>> axis = 1 >>> reduction = "none" >>> output = ops.tensor_scatter_elements(input_x, indices, updates, axis, reduction) >>> print(output) [[ 1 2 8 4 8]] """ _tensor_scatter_elements = _get_cache_prim(TensorScatterElements)(axis, reduction) return _tensor_scatter_elements(input_x, indices, updates)
[docs]def space_to_batch_nd(input_x, block_size, paddings): r""" Divides a tensor's spatial dimensions into blocks and combines the block sizes with the original batch. This operation will divide spatial dimensions into blocks with `block_size`, and after division, the output tensor's spatial dimension is the corresponding number of blocks. The output tensor's batch dimension is the product of the original batch and the product of `block_size`. Before division, the spatial dimensions of the input are zero padded according to paddings if necessary. Assume input shape is :math:`(n, c_1, ... c_k, w_1, ..., w_M)` with :math:`block\_size` and :math:`paddings`. Then the shape of the output tensor will be :math:`(n', c_1, ... c_k, w'_1, ..., w'_M)`, where .. math:: \begin{array}{ll} \\ n' = n*(block\_size[0] * ... * block\_size[M]) \\ w'_i = (w_i + paddings[i][0] + paddings[i][1])//block\_size[i] \end{array} Args: input_x (Tensor): The input tensor. It must be a 4-D tensor on Ascend. block_size (Union[list(int), tuple(int), int]): The block size of dividing block with all value greater than 1. If `block_size` is a tuple or list, the length of `block_size` is M corresponding to the number of spatial dimensions. If `block_size` is an int, the block size of M dimensions are the same, equal to `block_size`. M must be 2 on Ascend. paddings (Union[tuple, list]): The padding values for spatial dimensions, containing M subtraction list. Each contains 2 integer values. All values must be greater than 0. `paddings[i]` specifies the paddings for the spatial dimension i, which corresponds to the input dimension i + offset. It is required that input_shape[i+offset]+paddings[i][0]+paddings[i][1] is divisible by block_size[i]. M must be 2 on Ascend. Returns: Tensor, the output tensor with the same data type as input. Raises: ValueError: If `block_size` is not one dimensional when `block_size` is a list or tuple. ValueError: If the length of `block_size` is not 2 on Ascend. ValueError: If the element of `block_size` is not an integer larger than 1. ValueError: If shape of `paddings` is not (M, 2), where M is the length of `block_size`. ValueError: If the element of `paddings` is not an integer larger than 0. TypeError: If `block_size` is not one of list, tuple, int. TypeError: If `paddings` is neither list nor tuple. Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> block_size = [2, 2] >>> paddings = [[0, 0], [0, 0]] >>> input_x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mindspore.float32) >>> output = ops.space_to_batch_nd(input_x, block_size, paddings) >>> print(output) [[[[1.]]] [[[2.]]] [[[3.]]] [[[4.]]]] """ _space_to_batch_nd = _get_cache_prim(P.SpaceToBatchND)(block_size, paddings) return _space_to_batch_nd(input_x)
[docs]def batch_to_space_nd(input_x, block_shape, crops): r""" Divides batch dimension with blocks and interleaves these blocks back into spatial dimensions. This operation will divide batch dimension N into blocks with block_shape, the output tensor's N dimension is the corresponding number of blocks after division. The output tensor's H, W dimension is the product of original H, W dimension and block_shape with given amount to crop from dimension, respectively. Args: input_x (Tensor): The input tensor. It must be greater or equal to 4-D tensor(equal to 4-D tensor on Ascend), batch dimension must be divisible by product of `block_shape`. The data type is float16 or float32. block_shape (Union[list(int), tuple(int), int]): The block shape of dividing block with all value greater than 1. If `block_shape` is a tuple or list, the length of `block_shape` is M corresponding to the number of spatial dimensions. If `block_shape` is an int, the block size of M dimensions are the same, equal to `block_shape`. M must be 2. crops (Union[list(int), tuple(int)]): The crop value for H and W dimension, containing 2 subtraction list, each containing 2 int value. All values must be >= 0. crops[i] specifies the crop values for spatial dimension i, which corresponds to input dimension i+2. It is required that :math:`input\_shape[i+2]*block\_shape[i] > crops[i][0]+crops[i][1]` Returns: Tensor, the output tensor with the same type as input. Assume input shape is (n, c, h, w) with block_shape and crops. The output shape will be (n', c', h', w'), where :math:`n' = n//(block\_shape[0]*block\_shape[1])` :math:`c' = c` :math:`h' = h*block\_shape[0]-crops[0][0]-crops[0][1]` :math:`w' = w*block\_shape[1]-crops[1][0]-crops[1][1]` Raises: TypeError: If `block_shape` is not one of list, tuple, int. TypeError: If `crops` is neither list nor tuple. ValueError: If `block_shape` is not one dimensional when `block_shape` is a list or tuple. ValueError: If length of `block_shape` or `crops` is not equal to 2. ValueError: If the element of `block_shape` is not an integer larger than 1. ValueError: If shape of `crops` is not (M, 2), where M is the length of `block_shape`. ValueError: If the element of `crops` is not an integer larger than 0. Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> block_shape = [2, 2] >>> crops = [[0, 0], [0, 0]] >>> input_x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mindspore.float32) >>> output = ops.batch_to_space_nd(input_x, block_shape, crops) >>> print(output) [[[[1. 2.] [3. 4.]]]] """ _batch_to_space_nd = _get_cache_prim(P.BatchToSpaceND)(block_shape, crops) return _batch_to_space_nd(input_x)
[docs]def nonzero(x): """ Return a Tensor of the positions of all non-zero values. Args: x (Tensor): The shape of Tensor is :math:`(x_1, x_2, ..., x_R)`. The data type is Number or Bool. Returns: Tensor, a 2-D Tensor whose data type is int64, containing the positions of all non-zero values of the input. Raises: TypeError: If `x` is not Tensor. ValueError: If 'x' dim equal to 0. Supported Platforms: ``GPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> import mindspore.ops as ops >>> x = Tensor(np.array([[[1, 0], [-5, 0]]]), mindspore.int32) >>> output = ops.nonzero(x) >>> print(output) [[0 0 0] [0 1 0]] """ return nonzero_(x)
[docs]def matrix_diag(x, k=0, num_rows=-1, num_cols=-1, padding_value=0, align="RIGHT_LEFT"): r""" Returns a Tensor with the contents in `x` as k[0]-th to k[1]-th diagonals of a matrix, with everything else padded with `padding_value`. `num_rows` and `num_cols` specify the dimension of the innermost matrix of the output. If both are not specified, the op assumes the innermost matrix of output Tensor is square and infers its size from `k` and the innermost dimension of `x`. If the `num_rows` and `num_cols` specify only one of them, the operator will derive the smallest legal value as the dimension of output. Moreover, when only one diagonal is given (k is an integer or k[0] == k[1]), the first to the second innermost dimension of `x` is the batch size. Otherwise, the second innermost dimension is not a part of batch size. Args: x (Tensor): The diagonal Tensor. k (Union[int, Tensor], optional): A Tensor of type int32. Diagonal offsets. Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. `k` can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. k[0] must not be larger than k[1]. The value must be in the range of given or derivated `num_rows` and `num_cols`, meaning value of k must be in (-num_rows, num_cols). Default: 0. num_rows (Union[int, Tensor], optional): A Tensor of type int32 with only one value. The number of rows of the output Tensor. If `num_rows` is -1, indicating that the innermost matrix of the output Tensor is a square matrix, and the real number of rows will be derivated by other inputs. That is :math:`num\_rows = x.shape[-1] - min(k[1], 0)`. Otherwise, the value must be equal or greater than :math:`x.shape[-1] - min(k[1], 0)`. Default: -1. num_cols (Union[int, Tensor], optional): A Tensor of type int32 with only one value. The number of columns of the output Tensor. If `num_cols` is -1, indicating that the innermost matrix of the output Tensor is a square matrix, and the real number of columns will be derivated by other inputs. That is :math:`num\_cols = x.shape[-1] + max(k[0], 0)`. Otherwise, the value must be equal or greater than :math:`x.shape[-1] - min(k[1], 0)`. Default: -1. padding_value (Union[int, float, Tensor], optional): A Tensor with only one value. Have the same dtype as x. The number to fill the area outside the specified diagonal band. Default: 0. align (str, optional): An optional string from: "RIGHT_LEFT"(default), "LEFT_RIGHT", "LEFT_LEFT", "RIGHT_RIGHT". Align is a string specifying how superdiagonals and subdiagonals should be aligned, respectively. "RIGHT_LEFT" aligns superdiagonals to the right (left-pads the row) and subdiagonals to the left (right-pads the row). Returns: A Tensor. Has the same type as `x`. Suppose `x` has r dimensions with shape `(I, J, ..., M, N)`. The output Tensor has rank r + 1 with shape `(I, J, ..., M, num_rows, num_cols)` when only one diagonal is given (k is an integer or k[0] == k[1]). Otherwise, it has rank r with shape `(I, J, ..., num_rows, num_cols)`. Raises: TypeError: If `x` is not Tensor. TypeError: If input `x` and `padding_value` are not the same dtype. TypeError: If `k`, `num_rows` or `num_cols` is not int32 dtype. ValueError: If rank of `k` is not equal to 0 or 1. ValueError: If rank of `num_rows`, `num_cols` or `padding_value` is not equal to 0. ValueError: If size of `k` is not equal to 1 or 2. ValueError: If the value of `k` is not in (-num_rows, num_cols). ValueError: If k[1] is not greater equal to k[0] when k[0] != k[1]. ValueError: If rank of `x` is not greater than or is equal to 1 when k is an integer or k[0] == k[1]. ValueError: If rank of `x` is not greater than or is equal to 2 when k[0] != k[1]. ValueError: If x.shape[-2] is not equal to k[1] - k[0] + 1 when k[0] != k[1]. ValueError: If `num_rows` and `num_cols` do not match the dimensions of `x` and the values of `k`. ValueError: If `align` is not a string or not in the valid set of values. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> from mindspore import ops >>> x = Tensor(np.array([[8, 9, 0], ... [1, 2, 3], ... [0, 4, 5]]), mindspore.float32) >>> k =Tensor(np.array([-1, 1]), mindspore.int32) >>> num_rows = Tensor(np.array(3), mindspore.int32) >>> num_cols = Tensor(np.array(3), mindspore.int32) >>> padding_value = Tensor(np.array(11), mindspore.float32) >>> output = ops.matrix_diag(x, k, num_rows, num_cols, padding_value, align='LEFT_RIGHT') >>> print(output) [[ 1. 8. 11.] [ 4. 2. 9.] [11. 5. 3.]] >>> print(output.shape) (3, 3) """ if isinstance(k, int) and not isinstance(k, bool): k = cast_(k, mstype.int32) if isinstance(num_rows, int) and not isinstance(num_rows, bool): num_rows = cast_(num_rows, mstype.int32) if isinstance(num_cols, int) and not isinstance(num_cols, bool): num_cols = cast_(num_cols, mstype.int32) if isinstance(padding_value, (float, int)) and not isinstance(padding_value, bool): padding_value = cast_(padding_value, x.dtype) matrix_diag_v3 = _get_cache_prim(MatrixDiagV3)(align) return matrix_diag_v3(x, k, num_rows, num_cols, padding_value)
[docs]def matrix_diag_part(x, k=0, padding_value=0, align="RIGHT_LEFT"): r""" Returns the diagonal part of input tensor. Returns a tensor with the k[0]-th to k[1]-th diagonals of `x`. Some diagonals are shorter than max_diag_len and need to be padded. Input k and padding_value must be const Tensor when taking Graph mode. Args: x (Tensor): The input Tensor with rank r, where r >= 2. k (Union[int, Tensor], optional): A Tensor of type int32. Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. k can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. k[0] must not be larger than k[1]. The value of k has restructions, meaning value of k must be in (-x.shape[-2], x.shape[-1]). padding_value (Union[int, float, Tensor], optional): A Tensor with only one value. Have the same dtype as x. The number to fill the area outside the specified diagonal band. Default: 0. align (str, optional): An optional string from: "RIGHT_LEFT"(default), "LEFT_RIGHT", "LEFT_LEFT", "RIGHT_RIGHT". Align is a string specifying how superdiagonals and subdiagonals should be aligned, respectively. "RIGHT_LEFT" aligns superdiagonals to the right (left-pads the row) and subdiagonals to the left (right-pads the row). Returns: A Tensor. Has the same type as `x`. Assume `x` has r dimensions :math:`[I, J, ..., L, M, N]`. Let `max_diag_len` be the maximum length among all diagonals to be extracted, :math:`max\_diag\_len = min(M + min(k[1], 0), N + min(-k[0], 0))` Let `num_diags` be the number of diagonals to extract, :math:`num\_diags = k[1] - k[0] + 1`. If :math:`num\_diags == 1`, the output tensor is of rank r - 1 with shape :math:`[I, J, ..., L, max\_diag\_len]` Otherwise, the output tensor has rank r with dimensions :math:`[I, J, ..., L, num\_diags, max\_diag\_len]` Raises: TypeError: If `x` is not Tensor. TypeError: If input `x` and `padding_value` are not the same dtype. TypeError: If `k` is not int32 dtype. ValueError: If `align` is not a string or not in the valid range. ValueError: If rank of `k` is not equal to 0 or 1. ValueError: If rank of `padding_value` is not equal to 0. ValueError: If rank of `x` is not greater equal to 2. ValueError: If size of `k` is not equal to 1 or 2. ValueError: If k[1] is not greater equal to k[0] in case the size of `k` is 2. ValueError: If the value of `k` is not in (-x.shape[-2], x.shape[-1]). Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x = Tensor(np.array([[1, 2, 3, 4], ... [5, 6, 7, 8], ... [9, 8, 7, 6]]), mindspore.float32) >>> k =Tensor(np.array([1, 3]), mindspore.int32) >>> padding_value = Tensor(np.array(9), mindspore.float32) >>> output = ops.matrix_diag_part(x, k, padding_value, align='RIGHT_LEFT') >>> print(output) [[9. 9. 4.] [9. 3. 8.] [2. 7. 6.]] >>> print(output.shape) (3, 3) """ matrix_diag_part_v3 = _get_cache_prim(MatrixDiagPartV3)(align) return matrix_diag_part_v3(x, k, padding_value)
[docs]def matrix_set_diag(x, diagonal, k=0, align="RIGHT_LEFT"): r""" Returns a batched matrix tensor with new batched diagonal values. Given x and diagonal, this operation returns a tensor with the same shape and values as x, except for the specified diagonals of the innermost matrices. These will be overwritten by the values in diagonal. Some diagonals are shorter than max_diag_len and need to be padded. The diagonal.shape[-2] must be equal to num_diags calculated by k[1] - k[0] + 1. The diagonal.shape[-1] must be equal to the longest diagonal value max_diag_len calculated by min(x.shape[-2] + min(k[1], 0), x.shape[-1] + min(-k[0], 0)). Let x have r + 1 dimensions [I, J, ..., L, M, N]. The diagonal tensor has rank r with shape [I, J, ..., L, max_diag_len] when k is an integer or k[0] == k[1]. Otherwise, it has rank r + 1 with shape [I, J, ..., L, num_diags, max_diag_len]. Args: x (Tensor): Rank r + 1, where r >= 1. diagonal (Tensor): A Tensor. Have the same dtype as x. Rank r when k is an integer or k[0] == k[1]. Otherwise, it has rank r + 1. k (Union[int, Tensor], optional): A int32 Scalar or int32 Tensor. Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. k can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. k[0] must not be larger than k[1]. The alue of k has restructions, meaning value of k must be in (-x.shape[-2], x.shape[-1]). Input k must be const Tensor when taking Graph mode. align (str, optional): An optional string from: "RIGHT_LEFT"(default), "LEFT_RIGHT", "LEFT_LEFT", "RIGHT_RIGHT". Align is a string specifying how superdiagonals and subdiagonals should be aligned, respectively. "RIGHT_LEFT" aligns superdiagonals to the right (left-pads the row) and subdiagonals to the left (right-pads the row). Returns: Tensor, The same type as x. Let x has r+1 dimensions [I, J, ..., L, M, N]. The output is a tensor of rank r+1 with dimensions [I, J, ..., L, M, N], the same as input x. Raises: TypeError: If input `x` or `diagonal` is not Tensor. TypeError: If input `x` and `diagonal` are not the same dtype. TypeError: If `k` is not int32 dtype. ValueError: If `align` is not a string or not in the valid range. ValueError: If rank of `k` is not equal to 0 or 1. ValueError: If rank of `x` is not greater equal to 2. ValueError: If size of `k` is not equal to 1 or 2. ValueError: If k[1] is not greater equal to k[0] in case the size of `k` is 2. ValueError: If the `diagonal` rank size don't match with input `x` rank size. ValueError: If the `diagonal` shape value don't match with input `x` shape value. ValueError: If the diagonal.shape[-2] is not equal to num_diags calculated by k[1] - k[0] + 1. ValueError: If the value of `k` is not in (-x.shape[-2], x.shape[-1]). ValueError: If the diagonal.shape[-1] is not equal to the max_diag_len calculated by min(x.shape[-2] + min(k[1], 0), x.shape[-1] + min(-k[0], 0)). Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x = Tensor(np.array([[7, 7, 7, 7], ... [7, 7, 7, 7], ... [7, 7, 7, 7]]), mindspore.float32) >>> diagonal = Tensor(np.array([[0, 9, 1], ... [6, 5, 8], ... [1, 2, 3], ... [4, 5, 0]]), mindspore.float32) >>> k = Tensor(np.array([-1, 2]), mindspore.int32) >>> align = 'RIGHT_LEFT' >>> output = ops.matrix_set_diag(x, diagonal, k, align) >>> print(output) [[1. 6. 9. 7.] [4. 2. 5. 1.] [7. 5. 3. 8.]] >>> print(output.shape) (3, 4) """ matrix_set_diag_v3_op = _get_cache_prim(MatrixSetDiagV3)(align) if isinstance(k, int) and not isinstance(k, bool): k = cast_(k, mstype.int32) return matrix_set_diag_v3_op(x, diagonal, k)
[docs]def meshgrid(inputs, indexing='xy'): """ Generates coordinate matrices from given coordinate tensors. Given N one-dimensional coordinate tensors, returns a tuple outputs of N N-D coordinate tensors for evaluating expressions on an N-D grid. Args: inputs (Union[tuple]): A Tuple of N 1-D Tensor objects. The length of input should be greater than 1. The data type is Number. indexing ('xy', 'ij', optional): Cartesian ('xy', default) or matrix ('ij') indexing of output. In the 2-D case with inputs of length `M` and `N`, the outputs are of shape `(N, M)` for 'xy' indexing and `(M, N)` for 'ij' indexing. In the 3-D case with inputs of length `M`, `N` and `P`, outputs are of shape `(N, M, P)` for 'xy' indexing and `(M, N, P)` for 'ij' indexing. Returns: Tensors, a Tuple of N N-D Tensor objects. The data type is the same with the Inputs. Raises: TypeError: If `indexing` is not a str or `inputs` is not a tuple. ValueError: If `indexing` is neither 'xy' nor 'ij'. Supported Platforms: ``Ascend`` ``CPU`` ``GPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor >>> import mindspore.ops as ops >>> x = Tensor(np.array([1, 2, 3, 4]).astype(np.int32)) >>> y = Tensor(np.array([5, 6, 7]).astype(np.int32)) >>> z = Tensor(np.array([8, 9, 0, 1, 2]).astype(np.int32)) >>> inputs = (x, y, z) >>> output = ops.meshgrid(inputs, indexing='xy') >>> print(output) (Tensor(shape=[3, 4, 5], dtype=Int32, value= [[[1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [3, 3, 3, 3, 3], [4, 4, 4, 4, 4]], [[1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [3, 3, 3, 3, 3], [4, 4, 4, 4, 4]], [[1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [3, 3, 3, 3, 3], [4, 4, 4, 4, 4]]]), Tensor(shape=[3, 4, 5], dtype=Int32, value= [[[5, 5, 5, 5, 5], [5, 5, 5, 5, 5], [5, 5, 5, 5, 5], [5, 5, 5, 5, 5]], [[6, 6, 6, 6, 6], [6, 6, 6, 6, 6], [6, 6, 6, 6, 6], [6, 6, 6, 6, 6]], [[7, 7, 7, 7, 7], [7, 7, 7, 7, 7], [7, 7, 7, 7, 7], [7, 7, 7, 7, 7]]]), Tensor(shape=[3, 4, 5], dtype=Int32, value= [[[8, 9, 0, 1, 2], [8, 9, 0, 1, 2], [8, 9, 0, 1, 2], [8, 9, 0, 1, 2]], [[8, 9, 0, 1, 2], [8, 9, 0, 1, 2], [8, 9, 0, 1, 2], [8, 9, 0, 1, 2]], [[8, 9, 0, 1, 2], [8, 9, 0, 1, 2], [8, 9, 0, 1, 2], [8, 9, 0, 1, 2]]])) """ meshgrid_op = _get_cache_prim(P.Meshgrid)(indexing) return meshgrid_op(inputs)
def affine_grid(theta, output_size, align_corners=False): r""" Generates a 2D or 3D flow field (sampling grid), given a batch of affine matrices theta. Args: theta (Tensor): The input tensor whose dtype is float16, float32. Input batch of affine matrices with shape [N, 2, 3] for 2D grid or [N, 3, 4] for 3D grid. output_size (tuple[int]): The target output image size. The value of target output with format [N, C, H, W] for 2D grid or [N, C, D, H, W] for 3D grid. align_corners (bool): If True, consider -1 and 1 to refer to the centers of the corner pixels rather than the image corners. The default value is False. Returns: Tensor, a tensor whose data type is same as 'theta', and the shape is [N, H, W, 2] for 2D grid or [N, D, H, W, 3] for 3D grid. Raises: TypeError: If `theta` is not a Tensor or `output_size` is not a tuple. ValueError: If the shape of `theta` is not [N, 2, 3] or [N, 3, 4]. ValueError: If the size of `output_size` is not 4 or 5. ValueError: If the shape of `theta` is [N, 2, 3], the size of `output_size` is not 4; If the shape of `theta` is [N, 3, 4], the size of `output_size` is not 5. ValueError: If the output_size[0] is not equal to the shape[0] of theta. Supported Platforms: ``GPU`` Examples: >>> import mindspore >>> from mindspore import Tensor >>> import mindspore.ops as ops >>> theta = Tensor([[[0.8, 0.5, 0],[-0.5, 0.8, 0]]], mindspore.float32) >>> out_size = (1, 3, 2, 3) >>> output = ops.affine_grid(theta, out_size, False) >>> print(output) [[[[-0.78333336 -0.06666666] [-0.25 -0.4 ] [ 0.28333336 -0.73333335]] [[-0.28333336 0.73333335] [ 0.25 0.4 ] [ 0.78333336 0.06666666]]]] """ affine_grid_op = AffineGrid(align_corners) return affine_grid_op(theta, output_size)
[docs]def broadcast_to(x, shape): """ Broadcasts input tensor to a given shape. The dim of input shape must be smaller than or equal to that of target shape. Suppose input shape is :math:`(x_1, x_2, ..., x_m)`, target shape is :math:`(*, y_1, y_2, ..., y_m)`, where :math:`*` means any additional dimension. The broadcast rules are as follows: Compare the value of :math:`x_m` and :math:`y_m`, :math:`x_{m-1}` and :math:`y_{m-1}`, ..., :math:`x_1` and :math:`y_1` consecutively and decide whether these shapes are broadcastable and what the broadcast result is. If the value pairs at a specific dim are equal, then that value goes right into that dim of output shape. With an input shape :math:`(2, 3)`, target shape :math:`(2, 3)` , the inferred output shape is :math:`(2, 3)`. If the value pairs are unequal, there are three cases: Case 1: If the value of the target shape in the dimension is -1, the value of the output shape in the dimension is the value of the corresponding input shape in the dimension. Case 2: If the value of target shape in the dimension is not -1, but the corresponding value in the input shape is 1, then the corresponding value of the output shape is that of the target shape. With an input shape :math:`(1, 3)`, target shape :math:`(8, 3)`, the output shape is :math:`(8, 3)`. Case 3: If the corresponding values of the two shapes do not satisfy the above cases, it means that broadcasting from the input shape to the target shape is not supported. So far we got the last m dims of the outshape, now focus on the first :math:`*` dims, there are two cases: If the first :math:`*` dims of output shape does not have -1 in it, then fill the input shape with ones until their length are the same, and then refer to Case 2 mentioned above to calculate the output shape. With target shape :math:`(3, 1, 4, 1, 5, 9)`, input shape :math:`(1, 5, 9)`, the filled input shape will be :math:`(1, 1, 1, 1, 5, 9)` and thus the output shape is :math:`(3, 1, 4, 1, 5, 9)`. If the first :math:`*` dims of output shape have -1 in it, it implies this -1 is conrresponding to a non-existing dim so they're not broadcastable. With target shape :math:`(3, -1, 4, 1, 5, 9)`, input shape :math:`(1, 5, 9)`, instead of operating the dim-filling process first, it raises errors directly. Args: x (Tensor): The input tensor. The data type should be one of the following types: float16, float32, int32, int8, uint8, bool. The shape is :math:`(N,*)` where :math:`*` means,any number of additional dimensions. shape (tuple): The target shape to broadcast. Can be fully specified, or have -1 in one position where it will be substituted by the input tensor's shape in that position, see example. Returns: Tensor, with the given `shape` and the same data type as `x`. Raises: TypeError: If `shape` is not a tuple. ValueError: If the target and input shapes are incompatible, or if a - 1 in the target shape is in an invalid location. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore.ops import broadcast_to >>> from mindspore import Tensor >>> shape = (2, 3) >>> x = Tensor(np.array([1, 2, 3]).astype(np.float32)) >>> output = broadcast_to(x, shape) >>> print(output) [[1. 2. 3.] [1. 2. 3.]] >>> shape = (-1, 2) >>> x = Tensor(np.array([[1], [2]]).astype(np.float32)) >>> output = broadcast_to(x, shape) >>> print(output) [[1. 1.] [2. 2.]] """ _broadcast_to = _get_cache_prim(P.BroadcastTo)(shape) return _broadcast_to(x)
[docs]def unsorted_segment_min(x, segment_ids, num_segments): r""" Computes the minimum of a tensor along segments. The following figure shows the calculation process of unsorted_segment_min: .. image:: UnsortedSegmentMin.png .. math:: \text { output }_i=\text{min}_{j \ldots} \text { data }[j \ldots] where :math:`min` over tuples :math:`j...` such that :math:`segment\_ids[j...] == i`. Note: - If the segment_id i is absent in the segment_ids, then output[i] will be filled with the maximum value of the x's type. - The `segment_ids` must be non-negative tensor. Args: x (Tensor): The shape is :math:`(x_1, x_2, ..., x_R)`. With float16, float32 or int32 data type. segment_ids (Tensor): A `1-D` tensor whose shape is :math:`(x_1)`, the value must be non-negative tensor. The data type must be int32. num_segments (int): The value specifies the number of distinct `segment_ids`. Returns: Tensor, set the number of `num_segments` as `N`, the shape is :math:`(N, x_2, ..., x_R)`. Raises: TypeError: If `num_segments` is not an int. ValueError: If length of shape of `segment_ids` is not equal to 1. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import Tensor >>> from mindspore import ops >>> import numpy as np >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)) >>> segment_ids = Tensor(np.array([0, 1, 1]).astype(np.int32)) >>> num_segments = 2 >>> output = ops.unsorted_segment_min(x, segment_ids, num_segments) >>> print(output) [[1. 2. 3.] [4. 2. 1.]] """ unsorted_segment_min_ = P.UnsortedSegmentMin() return unsorted_segment_min_(x, segment_ids, num_segments)
[docs]def unsorted_segment_max(x, segment_ids, num_segments): r""" Computes the maximum along segments of a tensor. The following figure shows the calculation process of unsorted_segment_max: .. image:: UnsortedSegmentMax.png .. math:: \text { output }_i=\text{max}_{j \ldots} \text { data }[j \ldots] where :math:`max` over tuples :math:`j...` such that :math:`segment\_ids[j...] == i`. Note: - If the segment_id i is absent in the segment_ids, then output[i] will be filled with the minimum value of the x's type. - The `segment_ids` must be non-negative tensor. Args: x (Tensor): The shape is :math:`(x_1, x_2, ..., x_R)`. With float16, float32 or int32 data type. segment_ids (Tensor): A `1-D` tensor whose shape is :math:`(x_1)`, the value must be non-negative tensor. The data type must be int32. num_segments (int): The value specifies the number of distinct `segment_ids`. Returns: Tensor, set the number of `num_segments` as `N`, the shape is :math:`(N, x_2, ..., x_R)`. Raises: TypeError: If `num_segments` is not an int. ValueError: If length of shape of `segment_ids` is not equal to 1. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import Tensor >>> from mindspore import ops >>> import numpy as np >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)) >>> segment_ids = Tensor(np.array([0, 1, 1]).astype(np.int32)) >>> num_segments = 2 >>> output = ops.unsorted_segment_max(x, segment_ids, num_segments) >>> print(output) [[1. 2. 3.] [4. 5. 6.]] """ unsorted_segment_max_ = P.UnsortedSegmentMax() return unsorted_segment_max_(x, segment_ids, num_segments)
[docs]def unsorted_segment_prod(x, segment_ids, num_segments): r""" Computes the product of a tensor along segments. The following figure shows the calculation process of unsorted_segment_prod: .. image:: UnsortedSegmentProd.png Note: - If the segment_id i is absent in the segment_ids, then output[i] will be filled with 1. - The `segment_ids` must be non-negative tensor. Args: x (Tensor): The shape is :math:`(x_1, x_2, ..., x_R)`. With float16, float32 or int32 data type. segment_ids (Tensor): A `1-D` tensor whose shape is :math:`(x_1)`, the value must be non-negative tensor. The data type must be int32. num_segments (int): The value specifies the number of distinct `segment_ids`. Returns: Tensor, set the number of `num_segments` as `N`, the shape is :math:`(N, x_2, ..., x_R)`. Raises: TypeError: If `num_segments` is not an int. ValueError: If length of shape of `segment_ids` is not equal to 1. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> from mindspore import Tensor >>> from mindspore import ops >>> import numpy as np >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)) >>> segment_ids = Tensor(np.array([0, 1, 0]).astype(np.int32)) >>> num_segments = 2 >>> output = ops.unsorted_segment_prod(x, segment_ids, num_segments) >>> print(output) [[4. 4. 3.] [4. 5. 6.]] """ unsorted_segment_prod_ = P.UnsortedSegmentProd() return unsorted_segment_prod_(x, segment_ids, num_segments)
[docs]def adaptive_max_pool2d(input_x, output_size, return_indices=False): r""" adaptive_max_pool2d operation. This operator applies a 2D adaptive max pooling to an input signal composed of multiple input planes. That is, for any input size, the size of the specified output is H x W. The number of output features is equal to the number of input planes. The input and output data format can be "NCHW" and "CHW". N is the batch size, C is the number of channels, H is the feature height, and W is the feature width. .. math:: \begin{align} h_{start} &= floor(i * H_{in} / H_{out})\\ h_{end} &= ceil((i + 1) * H_{in} / H_{out})\\ w_{start} &= floor(j * W_{in} / W_{out})\\ w_{end} &= ceil((j + 1) * W_{in} / W_{out})\\ Output(i,j) &= {\max Input[h_{start}:h_{end}, w_{start}:w_{end}]} \end{align} Note: Ascend platform only supports float16 type for input_x. Args: input_x (Tensor): The input of adaptive_max_pool2d, which is a 3D or 4D tensor, with float16, float32 or float64 data type. output_size (Union[int, tuple]): The target output size is H x W. ouput_size can be a tuple, or a single H for H x H, and H and W can be int or None which means the output size is the same as the input. return_indices (bool): If `return_indices` is True, the indices of max value would be output. Default: False. Returns: Tensor, with the same type as the `input_x`. Shape of the output is `input_x_shape[:len(input_x_shape) - len(out_shape)] + out_shape`. Raises: TypeError: If `output_size` is not int or tuple. TypeError: If `input_x` is not a tensor. TypeError: If `return_indices` is not a bool. TypeError: If dtype of `input_x` is not float16, float32 or float64. ValueError: If `output_size` is a tuple and the length of `output_size` is not 2. ValueError: If the dimension of `input_x` is not NCHW or CHW. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> # case 1: output_size=(None, 2) >>> input_x = Tensor(np.array([[[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], ... [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], ... [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]]), mindspore.float32) >>> output = ops.adaptive_max_pool2d(input_x, (None, 2)) >>> print(output) [[[[2. 3.] [5. 6.] [8. 9.]] [[2. 3.] [5. 6.] [8. 9.]] [[2. 3.] [5. 6.] [8. 9.]]]] >>> # case 2: output_size=2 >>> output = ops.adaptive_max_pool2d(input_x, 2) >>> print(output) [[[[5. 6.] [8. 9.]] [[5. 6.] [8. 9.]] [[5. 6.] [8. 9.]]]] >>> # case 3: output_size=(1, 2) >>> output = ops.adaptive_max_pool2d(input_x, (1, 2)) >>> print(output) [[[[8. 9.]] [[8. 9.]] [[8. 9.]]]] """ _adaptive_max_pool2d = _get_cache_prim(AdaptiveMaxPool2D)(output_size, return_indices) return _adaptive_max_pool2d(input_x)
[docs]def index_fill(x, dim, index, value): """ Fills the elements under the `dim` dimension of the input Tensor `x` with the input `value` by selecting the indices in the order given in `index`. Args: x (Tensor): Input Tensor. The supported data type is Number or Bool. dim (Union[int, Tensor]): Dimension along which to fill the input Tensor. Only supports an int number or a 0-dimensional Tensor, whose data type is int32 or int64. index (Tensor): Indices of the input Tensor to fill in. The dtype must be int32. value (Union[bool, int, float, Tensor]): Value to fill the returned Tensor. If `value` is a Tensor, it must be a 0-dimensional Tensor and has the same dtype as `x`. Otherwise, the `value` will be cast to a 0-dimensional Tensor with the same data type as `x`. Returns: Tensor, has the same dtype and shape as input Tensor. Raises: TypeError: If `x` is not a Tensor. TypeError: If `dim` is neither int number nor Tensor. TypeError: When `dim` is a Tensor, its dtype is not int32 or int64. TypeError: If `index` is not a Tensor. TypeError: If dtype of `index` is not int32. TypeError: If `value` is not a bool, int, float, or Tensor. TypeError: When `value` is a Tensor, the dtype of `x` and `value` are not the same. ValueError: If `dim` is a Tensor and its rank is not equal to 0. ValueError: If the rank of `index` is greater than 1D. ValueError: When `value` is a Tensor and its rank is not equal to 0. RuntimeError: If the value of `dim` is out the range of `[-x.ndim, x.ndim - 1]`. RuntimeError: If the values of `index` are out the range of `[-x.shape[dim], x.shape[dim]-1]`. Supported Platforms: ``GPU`` Examples: >>> import mindspore >>> import numpy as np >>> import mindspore.ops as ops >>> from mindspore import Tensor >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.float32)) >>> index = Tensor([0, 2], mindspore.int32) >>> value = Tensor(-2.0, mindspore.float32) >>> y = ops.index_fill(x, 1, index, value) >>> print(y) [[-2. 2. -2.] [-2. 5. -2.] [-2. 8. -2.]] """ if isinstance(dim, int) and not isinstance(dim, bool): dim = cast_(dim, mstype.int32) if isinstance(value, (bool, float, int)): value = cast_(value, x.dtype) return index_fill_(x, dim, index, value)
[docs]def population_count(input_x): r""" Computes element-wise population count(a.k.a bitsum, bitcount). For each entry in `input_x`, calculates the number of 1 bits in the binary representation of that entry. Args: input_x (Tensor): Tensor of any dimension. The data type must be int16 or uint16 (Ascend). The data type must be int8, int16, int32, int64, uint8, uint16, uint32, uint64 (CPU and GPU). Returns: Tensor, with the same shape as the input, and the data type is uint8. Raises: TypeError: If `input_x` is not a Tensor. TypeError: If dtype of `input_x` is not int16, uint16 (Ascend). TypeError: If dtype of `input_x` is not int8, int16, int32, int64, uint8, uint16, uint32, uint64 (CPU and GPU). Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor([0, 1, 3], mindspore.int16) >>> output = ops.population_count(input_x) >>> print(output) [0 1 2] """ return population_count_(input_x)
############################## # Type Conversion Functions. ##############################
[docs]def scalar_cast(input_x, input_y): """ Casts the input scalar to another type. Args: input_x (scalar): The input scalar. Only constant value is allowed. input_y (mindspore.dtype): The type to be cast. Only constant value is allowed. Returns: Scalar. The type is the same as the python type corresponding to `input_y`. Raises: TypeError: If neither `input_x` nor `input_y` is a constant value. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> output = ops.scalar_cast(255.0, mindspore.int32) >>> print(output) 255 """ return scalar_cast_(input_x, input_y)
[docs]def tensor_scatter_mul(input_x, indices, updates): """ Creates a new tensor by multiplying the values from the positions in `input_x` indicated by `indices`, with values from `updates`. When divided values are provided for the same index, the result of the update will multiply these values respectively. Except that the updates are applied on output `Tensor` instead of input `Parameter`. The last axis of `indices` is the depth of each index vectors. For each index vector, there must be a corresponding value in `updates`. The shape of `updates` should be equal to the shape of `input_x[indices]`. For more details, see use cases. Note: - If some values of the `indices` are out of bound, instead of raising an index error, the corresponding `updates` will not be updated to `input_x`. Args: input_x (Tensor): The target tensor. The dimension of input_x must be no less than indices.shape[-1]. indices (Tensor): The index of input tensor whose data type is int32 or int64. The rank must be at least 2. updates (Tensor): The tensor to update the input tensor, has the same type as input, and updates shape should be equal to indices.shape[:-1] + input_x.shape[indices.shape[-1]:]. Returns: Tensor, has the same shape and type as `input_x`. Raises: TypeError: If dtype of `indices` is neither int32 nor int64. ValueError: If length of shape of `input_x` is less than the last dimension of shape of `indices`. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) >>> indices = Tensor(np.array([[0, 0], [0, 0]]), mindspore.int32) >>> updates = Tensor(np.array([1.0, 2.2]), mindspore.float32) >>> # Next, demonstrate the approximate operation process of this operator: >>> # 1, indices[0] = [0, 0], indices[1] = [0, 0] >>> # 2, And input_x[0, 0] = -0.1 >>> # 3, So input_x[indices] = [-0.1, -0.1] >>> # 4, Satisfy the above formula: input_x[indices].shape=(2) == updates.shape=(2) >>> # 5, Perform the multiply operation for the first time: >>> # first_input_x = input_x[0][0] * updates[0] = [[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]] >>> # 6, Perform the multiply operation for the second time: >>> # second_input_x = input_x[0][0] * updates[1] = [[-0.22, 0.3, 3.6], [0.4, 0.5, -3.2]] >>> output = ops.tensor_scatter_mul(input_x, indices, updates) >>> print(output) [[-0.22 0.3 3.6 ] [ 0.4 0.5 -3.2 ]] """ return tensor_scatter_mul_(input_x, indices, updates)
[docs]def tensor_scatter_div(input_x, indices, updates): """ Creates a new tensor by dividing the values from the positions in `input_x` indicated by `indices`, with values from `updates`. When divided values are provided for the same index, the result of the update will be to divided these values respectively. Except that the updates are applied on output `Tensor` instead of input `Parameter`. The last axis of `indices` is the depth of each index vectors. For each index vector, there must be a corresponding value in `updates`. The shape of `updates` should be equal to the shape of `input_x[indices]`. For more details, see use cases. Note: - If some values of the `indices` are out of bound, instead of raising an index error, the corresponding `updates` will not be updated to `input_x`. - The operator can't handle division by 0 exceptions, so the user needs to make sure there is no 0 value in `updates`. Args: input_x (Tensor): The target tensor. The dimension of input_x must be no less than indices.shape[-1]. indices (Tensor): The index of input tensor whose data type is int32 or int64. The rank must be at least 2. updates (Tensor): The tensor to update the input tensor, has the same type as input, and updates.shape should be equal to indices.shape[:-1] + input_x.shape[indices.shape[-1]:]. Returns: Tensor, has the same shape and type as `input_x`. Raises: TypeError: If dtype of `indices` is neither int32 nor int64. ValueError: If length of shape of `input_x` is less than the last dimension of shape of `indices`. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor, nn, ops >>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) >>> indices = Tensor(np.array([[0, 0], [0, 0]]), mindspore.int32) >>> updates = Tensor(np.array([1.0, 2.0]), mindspore.float32) >>> output = ops.tensor_scatter_div(input_x, indices, updates) >>> print(output) [[-0.05 0.3 3.6 ] [ 0.4 0.5 -3.2 ]] """ return tensor_scatter_div_(input_x, indices, updates)
[docs]def scalar_to_array(input_x): """ Converts a scalar to a `Tensor`. Args: input_x (Union[int, float]): The input is a scalar. Only constant value is allowed. Returns: Tensor. 0-D Tensor and the content is the input. Raises: TypeError: If `input_x` is neither int nor float. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = 1.0 >>> print(type(input_x)) <class 'float'> >>> output = ops.scalar_to_array(input_x) >>> print(type(output)) <class 'mindspore.common.tensor.Tensor'> >>> print(output) 1.0 """ return scalar_to_array_(input_x)
[docs]def scalar_to_tensor(input_x, dtype=mstype.float32): """ Converts a scalar to a `Tensor`, and converts the data type to the specified type. Args: input_x (Union[int, float]): The input is a scalar. Only constant value is allowed. dtype (mindspore.dtype): The target data type. Default: mindspore.float32. Only constant value is allowed. Returns: Tensor. 0-D Tensor and the content is the input. Raises: TypeError: If `input_x` is neither int nor float. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> data = 1 >>> output = ops.scalar_to_tensor(data, mindspore.float32) >>> print(output) 1.0 """ return scalar_to_tensor_(input_x, dtype)
[docs]def tuple_to_array(input_x): """ Converts a tuple to a tensor. If the type of the first number in the tuple is integer, the data type of the output tensor is int. Otherwise, the data type of the output tensor is float. Args: input_x (tuple): A tuple of numbers. These numbers have the same type. Only constant value is allowed. The shape is :math:`(N,*)` where :math:`*` means,any number of additional dimensions. Returns: Tensor, if the input tuple contains `N` numbers, then the shape of the output tensor is (N,). Raises: TypeError: If `input_x` is not a tuple. ValueError: If length of `input_x` is less than or equal to 0. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = (1,2,3) >>> print(type(input_x)) <class 'tuple'> >>> output = ops.tuple_to_array(input_x) >>> print(type(output)) <class 'mindspore.common.tensor.Tensor'> >>> print(output) [1 2 3] """ return tuple_to_array_(input_x)
[docs]def masked_select(x, mask): """ Returns a new 1-D Tensor which indexes the `x` tensor according to the boolean `mask`. The shapes of the `mask` tensor and the `x` tensor don't need to match, but they must be broadcastable. Args: x (Tensor): The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. mask (Tensor[bool]): The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. Returns: A 1-D Tensor, with the same type as `x`. Raises: TypeError: If `x` or `mask` is not a Tensor. TypeError: If dtype of `mask` is not bool. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore.ops as ops >>> from mindspore import Tensor >>> x = Tensor(np.array([1, 2, 3, 4]), mindspore.int64) >>> mask = Tensor(np.array([1, 0, 1, 0]), mindspore.bool_) >>> output = ops.masked_select(x, mask) >>> print(output) [1 3] """ return masked_select_(x, mask)
[docs]def masked_fill(input_x, mask, value): """ Fills elements of Tensor with value where mask is True. The shapes of `input_x` and `mask` need to be the same or broadcastable. Args: input_x (Tensor): The source Tensor whose data type is one of float16, float32, int8, int32. mask (Tensor[bool]): The boolean mask. value (Union[float, Tensor]): The value to fill in with, which dtype is the same as `input_x`. Returns: Tensor, has the same type and shape as `input_x`. Raises: TypeError: If dtype of `mask` is not bool. TypeError: If `input_x` or `mask` is not a Tensor. ValueError: If the shapes of `input_x` and `mask` could not be broadcast. TypeError: If dtype of `input_x` or `value` is not one of float16, float32, int8, int32. TypeError: If dtype of `value` is different from that of `input_x`. TypeError: If `value` is neither float number nor Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input = Tensor(np.array([1., 2., 3., 4.]), mindspore.float32) >>> mask = Tensor(np.array([True, True, False, True]), mindspore.bool_) >>> output = ops.masked_fill(input, mask, 0.5) >>> print(output) [0.5 0.5 3. 0.5] """ if isinstance(value, (float, int)) and isinstance(input_x, Tensor): value = scalar_to_tensor_(value, input_x.dtype) masked_fill_ = _get_cache_prim(P.MaskedFill)() return masked_fill_(input_x, mask, value)
[docs]def diag(input_x): r""" Constructs a diagonal tensor with a given diagonal values. Assume `input_x` has dimensions :math:`[D_1,... D_k]`, the output is a tensor of rank 2k with dimensions :math:`[D_1,..., D_k, D_1,..., D_k]` where: :math:`output[i_1,..., i_k, i_1,..., i_k] = input_x[i_1,..., i_k]` and 0 everywhere else. Args: input_x (Tensor): The input tensor. Returns: Tensor, has the same dtype as the `input_x`. Raises: TypeError: If `input_x` is not a Tensor. ValueError: If rank of `input_x` is less than 1. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> from mindspore import Tensor >>> import mindspore.ops as ops >>> input_x = Tensor([1, 2, 3, 4]).astype('int32') >>> output = ops.diag(input_x) >>> print(output) [[1 0 0 0] [0 2 0 0] [0 0 3 0] [0 0 0 4]] """ return diag_(input_x)
[docs]def col2im(input_x, output_size, kernel_size, dilation, padding_value, stride): """ Combines an array of sliding local blocks into a large containing tensor. Args: input_x (Tensor): 4D tensor with data type float16 or float. output_size (Tensor): 1D tensor with 2 elements of data type int. kernel_size (Union[int, tuple[int], list[int]]): The size of the kernel, should be two int for height and width. If type is int, it means that height equal with width. Must be specified. dilation (Union[int, tuple[int], list[int]]): The size of the dilation, should be two int for height and width. If type is int, it means that height equal with width. Default: 1. padding_value (Union[int, tuple[int], list[int]]): The size of the padding, should be two int for height and width. If type is int, it means that height equal with width. Default: 1. stride (Union[int, tuple[int], list[int]]): The size of the stride, should be two int for height and width. If type is int, it means that height equal with width. Default: 0. Returns: A 4D Tensor, with same type as 'input_x'. Raises: TypeError: If :attr:`kernel_size`, `dilation`, `padding_value`, `stride` data type is not in Union[int, tuple[int], list[int]]. ValueError: If :attr:`kernel_size`, `dilation`, `padding_value`, `stride` value is not greater than zero or elements number more than 2. ValueError: If :attr:`padding_value` value is less than zero or elements number more than 2. ValueError: If input_x.shape[2] != kernel_size[0] * kernel_size[1]. ValueError: If input_x.shape[3] does not match the calculated number of sliding blocks. Supported Platforms: ``GPU`` Examples: >>> x = Tensor(input_data=np.random.rand(16, 16, 4, 25), dtype=mstype.float32) >>> output_size = Tensor(input_data=[8, 8], dtype=mstype.int32) >>> output = ops.col2im(x, output_size, [2, 2], [2, 2], [2, 2], [2, 2]) >>> print(output.shape) (16, 16, 8, 8) """ c2i = _get_cache_prim(Col2Im)(kernel_size, dilation, padding_value, stride) return c2i(input_x, output_size)
[docs]def split(input_x, axis=0, output_num=1): r""" Splits the input tensor into output_num of tensors along the given axis and output numbers. The `input_x` tensor will be split into equally sized sub-tensors. This requires that `input_x.shape(axis)` is divisible by `output_num`. Args: input_x (Tensor): The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. axis (int): Index of the split position. Default: 0. output_num (int): The number of output tensors. Must be positive int. Default: 1. Returns: tuple[Tensor], the shape of each output tensor is the same, which is :math:`(y_1, y_2, ..., y_S)`. And the data type is the same with `input_x`. Raises: TypeError: If `axis` or `output_num` is not an int. ValueError: If `axis` is out of the range [-len(`input_x.shape`), len(`input_x.shape`)), or if the `output_num` is less than or equal to 0. ValueError: If `input_x.shape(axis)` is not divisible by `output_num`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]), mindspore.int32) >>> print(x) [[1 1 1 1] [2 2 2 2]] >>> output = ops.split(x, 1, 2) >>> print(output) (Tensor(shape=[2, 2], dtype=Int32, value= [[1, 1], [2, 2]]), Tensor(shape=[2, 2], dtype=Int32, value= [[1, 1], [2, 2]])) >>> output = ops.split(x, 1, 4) >>> print(output) (Tensor(shape=[2, 1], dtype=Int32, value= [[1], [2]]), Tensor(shape=[2, 1], dtype=Int32, value= [[1], [2]]), Tensor(shape=[2, 1], dtype=Int32, value= [[1], [2]]), Tensor(shape=[2, 1], dtype=Int32, value= [[1], [2]])) """ split_ = _get_cache_prim(P.Split)(axis, output_num) return split_(input_x)
[docs]def max(x, axis=0, keep_dims=False): """ Calculates the maximum value with the corresponding index. Calculates the maximum value along with the given axis for the input tensor. It returns the maximum values and indices. Note: In auto_parallel and semi_auto_parallel mode, the first output index can not be used. .. warning:: - If there are multiple maximum values, the index of the first maximum value is used. - The value range of "axis" is [-dims, dims - 1]. "dims" is the dimension length of "x". Also see: class: `mindspore.ops.ArgMaxWithValue`. Args: x (Tensor): The input tensor, can be any dimension. Set the shape of input tensor as :math:`(x_1, x_2, ..., x_N)`. axis (int): The dimension to reduce. Default: 0. keep_dims (bool): Whether to reduce dimension, if true, the output will keep same dimension with the input, the output will reduce dimension if false. Default: False. Returns: tuple (Tensor), tuple of 2 tensors, containing the corresponding index and the maximum value of the input tensor. - index (Tensor) - The index for the maximum value of the input tensor, with dtype int32. If `keep_dims` is true, the shape of output tensors is :math:`(x_1, x_2, ..., x_{axis-1}, 1, x_{axis+1}, ..., x_N)`. Otherwise, the shape is :math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)` . - values (Tensor) - The maximum value of input tensor, with the same shape as index, and same dtype as x. Raises: TypeError: If `x` is not Tensor. TypeError: If `keep_dims` is not a bool. TypeError: If `axis` is not an int. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32) >>> index, output = ops.max(x) >>> print(index, output) 3 0.7 >>> index, output = ops.max(x, keep_dims=True) >>> print(index, output) [3] [0.7] """ argmax_with_value_op = ArgMaxWithValue(axis, keep_dims) return argmax_with_value_op(x)
def argmax(x, axis=-1, output_type=mstype.int32): """ Calculates the indices of the maximum value of a tensor across the `axis`. If the shape of input tensor is :math:`(x_1, ..., x_N)`, the shape of the output tensor will be :math:`(x_1, ..., x_{axis-1}, x_{axis+1}, ..., x_N)`. Args: x (Tensor): Input tensor. :math:`(N,*)` where :math:`*` means, any number of additional dimensions. Support data type list as follows: Ascend: Float16, Float32. CPU: Float16, Float32, Float64. GPU: Float16, Float32. axis (int): Axis where the Argmax operation applies to. Default: -1. output_type (:class:`mindspore.dtype`): An optional data type of `mindspore.dtype.int32`. Default: `mindspore.dtype.int32`. Returns: Tensor, indices of the max value of input tensor across the `axis`. Raises: TypeError: If `axis` is not an int. TypeError: If `output_type` is neither int32 nor int64. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x = Tensor(np.array([[1, 20, 5], [67, 8, 9], [130, 24, 15]]).astype(np.float32)) >>> output = ops.argmax(x, axis=-1, output_type=mindspore.int32) >>> print(output) [1 0 0] """ argmax_op = P.Argmax(axis, output_type) return argmax_op(x)
[docs]def min(x, axis=0, keep_dims=False): """ Calculates the minimum value along with the given axis for the input tensor. It returns the minimum values and indices. Note: In auto_parallel and semi_auto_parallel mode, the first output index can not be used. .. warning:: - If there are multiple minimum values, the index of the first minimum value is used. - The value range of "axis" is [-dims, dims - 1]. "dims" is the dimension length of "x". Also see: class: `mindspore.ops.ArgMinWithValue`. Args: x (Tensor): The input tensor, can be any dimension. Set the shape of input tensor as :math:`(x_1, x_2, ..., x_N)` . And the data type only support mindspore.uint16, mindspore.uint32, mindspore.int16, mindspore.int32, mindspore.float16, mindspore.float32. axis (int): The dimension to reduce. Default: 0. keep_dims (bool): Whether to reduce dimension, if true the output will keep the same dimension as the input, the output will reduce dimension if false. Default: False. Returns: tuple (Tensor), tuple of 2 tensors, containing the corresponding index and the minimum value of the input tensor. - **index** (Tensor) - The index for the minimum value of the input tensor. If `keep_dims` is true, the shape of output tensors is :math:`(x_1, x_2, ..., x_{axis-1}, 1, x_{axis+1}, ..., x_N)`. Otherwise, the shape is :math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)` . - **values** (Tensor) - The minimum value of input tensor, with the same shape as index. Raises: TypeError: If data type `x` is not uint16, uint32, int16, int32, float16, float32. TypeError: If `keep_dims` is not a bool. TypeError: If `axis` is not an int. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32) >>> index, output = ops.min(x) >>> print(index, output) 0 0.0 >>> index, output = ops.min(x, keep_dims=True) >>> print(index, output) [0] [0.0] """ argmin_with_value_op = P.ArgMinWithValue(axis, keep_dims) return argmin_with_value_op(x)
[docs]def unsorted_segment_sum(input_x, segment_ids, num_segments): r""" Computes the sum of a tensor along segments. Calculates a tensor such that :math:`\text{output}[i] = \sum_{segment\_ids[j] == i} \text{data}[j, \ldots]`, where :math:`j` is a tuple describing the index of element in data. `segment_ids` selects which elements in data to sum up. Segment_ids does not need to be sorted, and it does not need to cover all values in the entire valid value range. The following figure shows the calculation process of unsorted_segment_sum: .. image:: UnsortedSegmentSum.png Note: - If the segment_id i is absent in the segment_ids, then output[i] will be filled with 0. - On Ascend, if the value of segment_id is less than 0 or greater than the length of the input data shape, an execution error will occur. If the sum of the given segment_ids :math:`i` is empty, then :math:`\text{output}[i] = 0`. If the given segment_ids is negative, the value will be ignored. 'num_segments' must be equal to the number of different segment_ids. Args: input_x (Tensor): The shape is :math:`(x_1, x_2, ..., x_R)`. segment_ids (Tensor): Set the shape as :math:`(x_1, x_2, ..., x_N)`, where 0 < N <= R. num_segments (Union[int, Tensor], optional): Set :math:`z` as num_segments. Returns: Tensor, the shape is :math:`(z, x_{N+1}, ..., x_R)`. Raises: TypeError: If `num_segments` is not an int. ValueError: If length of shape of `segment_ids` is less than 1. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import Tensor >>> from mindspore import ops >>> import mindspore >>> input_x = Tensor([1, 2, 3, 4], mindspore.float32) >>> segment_ids = Tensor([0, 0, 1, 2], mindspore.int32) >>> num_segments = 4 >>> output = ops.unsorted_segment_sum(input_x, segment_ids, num_segments) >>> print(output) [3. 3. 4. 0.] >>> input_x = Tensor([1, 2, 3, 4, 2, 5], mindspore.float32) >>> segment_ids = Tensor([0, 0, 1, 2, 3, 4], mindspore.int32) >>> num_segments = 6 >>> output = ops.unsorted_segment_sum(input_x, segment_ids, num_segments) >>> print(output) [3. 3. 4. 2. 5. 0.] """ return unsorted_segment_sum_(input_x, segment_ids, num_segments)
[docs]def top_k(input_x, k, sorted=True): r""" Finds values and indices of the `k` largest entries along the last dimension. .. warning:: - If sorted is set to 'False', it will use the aicpu operator, the performance may be reduced. If the `input_x` is a one-dimensional Tensor, finds the `k` largest entries in the Tensor, and outputs its value and index as a Tensor. Therefore, values[`k`] is the `k` largest item in `input_x`, and its index is indices [`k`]. For a multi-dimensional matrix, calculates the first `k` entries in each row (corresponding vector along the last dimension), therefore: .. math:: values.shape = indices.shape = input.shape[:-1] + [k]. If the two compared elements are the same, the one with the smaller index value is returned first. Args: input_x (Tensor): Input to be computed, data type must be float16, float32 or int32. k (int): The number of top elements to be computed along the last dimension, constant input is needed. sorted (bool, optional): If true, the obtained elements will be sorted by the values in descending order. Default: True. Returns: Tuple of 2 tensors, the values and the indices. - values (Tensor): The `k` largest elements in each slice of the last dimension. - indices (Tensor): The indices of values within the last dimension of input. Raises: TypeError: If `sorted` is not a bool. TypeError: If `input_x` is not a Tensor. TypeError: If `k` is not an int. TypeError: If dtype of `input_x` is not one of the following: float16, float32 or int32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import Tensor >>> from mindspore import ops >>> import mindspore >>> input_x = Tensor([1, 2, 3, 4, 5], mindspore.float16) >>> k = 3 >>> values, indices = ops.top_k(input_x, k, sorted=True) >>> print((values, indices)) (Tensor(shape=[3], dtype=Float16, value= [ 5.0000e+00, 4.0000e+00, 3.0000e+00]), Tensor(shape=[3], dtype=Int32, value= [4, 3, 2])) """ top_k_ = _get_cache_prim(P.TopK)(sorted) return top_k_(input_x, k)
__all__ = [ 'unique', 'unique_with_pad', 'unique_consecutive', 'eye', 'matrix_band_part', 'padding', 'fill', 'fill_', 'fills', 'tile', 'size', 'ger', 'ones', 'ones_like', 'shape', 'shape_', 'reverse_sequence', 'dyn_shape', 'rank', 'range', 'reshape', 'reshape_', 'flatten', 'tensor_slice', 'slice', 'concat', 'stack', 'unstack', 'scalar_cast', 'scalar_to_array', 'scalar_to_tensor', 'space_to_batch_nd', 'batch_to_space_nd', 'tuple_to_array', 'expand_dims', 'squeeze', 'transpose', 'scatter_nd', 'scatter_nd_add', 'scatter_nd_sub', 'scatter_nd_mul', 'scatter_nd_div', 'scatter_nd_max', 'scatter_nd_min', 'tensor_scatter_add', 'tensor_scatter_sub', 'tensor_scatter_mul', 'tensor_scatter_div', 'tensor_scatter_max', 'tensor_scatter_min', 'tensor_scatter_elements', 'unsorted_segment_min', 'unsorted_segment_max', 'unsorted_segment_prod', 'gather', 'gather_d', 'gather_elements', 'gather_nd', 'one_hot', 'masked_fill', 'masked_select', 'scatter_add', 'scatter_mul', 'scatter_max', 'scatter_min', 'scatter_div', 'scatter_update', 'select', 'nonzero', 'matrix_diag', 'matrix_diag_part', 'matrix_set_diag', 'diag', 'meshgrid', 'affine_grid', 'adaptive_max_pool2d', 'meshgrid', 'broadcast_to', 'col2im', 'split', "index_fill", 'max', 'argmax', 'min', 'unsorted_segment_sum', 'population_count', 'top_k', ] __all__.sort()