Network Migration Debugging Example

View Source On Gitee

The following uses the classic network ResNet50 as an example to describe the network migration method in detail based on the code.

Model Analysis and Preparation

Assume that the MindSpore operating environment has been configured according to Environment Preparation and Information Acquisition. Assume that ResNet-50 has not been implemented in the models repository.

First, analyze the algorithm and network structure.

The Residual Neural Network (ResNet) was proposed by Kaiming He et al. from Microsoft Research Institute. They used residual units to successfully train a 152-layer neural network, and thus became the winner of ILSVRC 2015. A conventional convolutional network or fully-connected network has more or less information losses, and further causes gradient disappearance or explosion. As a result, deep network training fails. The ResNet can solve these problems to some extent. By passing the input information to the output, the information integrity is protected. The network only needs to learn the differences between the input and output, simplifying the learning objective and difficulty. Its structure can accelerate training of a neural network and greatly improve the accuracy of the network model.

Paper: Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun."Deep Residual Learning for Image Recognition"

The sample code of PyTorch ResNet-50 CIFAR-10 contains the PyTorch ResNet implementation, CIFAR-10 data processing, network training, and inference processes.

Checklist

When reading the paper and referring to the implementation, analyze and fill in the following checklist:

Trick

Record

Data augmentation

RandomCrop, RandomHorizontalFlip, Resize, Normalize

Learning rate attenuation policy

Fixed learning rate = 0.001

Optimization parameters

Adam optimizer, weight_decay = 1e-5

Training parameters

batch_size = 32, epochs = 90

Network structure optimization

Bottleneck

Training process optimization

None

Reproducing Reference Implementation

Download the PyTorch code and CIFAR-10 dataset to train the network.

Train Epoch: 89 [0/1563 (0%)]    Loss: 0.010917
Train Epoch: 89 [100/1563 (6%)]    Loss: 0.013386
Train Epoch: 89 [200/1563 (13%)]    Loss: 0.078772
Train Epoch: 89 [300/1563 (19%)]    Loss: 0.031228
Train Epoch: 89 [400/1563 (26%)]    Loss: 0.073462
Train Epoch: 89 [500/1563 (32%)]    Loss: 0.098645
Train Epoch: 89 [600/1563 (38%)]    Loss: 0.112967
Train Epoch: 89 [700/1563 (45%)]    Loss: 0.137923
Train Epoch: 89 [800/1563 (51%)]    Loss: 0.143274
Train Epoch: 89 [900/1563 (58%)]    Loss: 0.088426
Train Epoch: 89 [1000/1563 (64%)]    Loss: 0.071185
Train Epoch: 89 [1100/1563 (70%)]    Loss: 0.094342
Train Epoch: 89 [1200/1563 (77%)]    Loss: 0.126669
Train Epoch: 89 [1300/1563 (83%)]    Loss: 0.245604
Train Epoch: 89 [1400/1563 (90%)]    Loss: 0.050761
Train Epoch: 89 [1500/1563 (96%)]    Loss: 0.080932

Test set: Average loss: -9.7052, Accuracy: 91%

Finished Training

You can download training logs and saved parameter files from resnet_pytorch_res.

Analyzing API/Feature Missing

  • API analysis

    PyTorch API

    MindSpore API

    Different or Not

    nn.Conv2D

    nn.Conv2d

    Yes. Difference

    nn.BatchNorm2D

    nn.BatchNom2d

    Yes. Difference

    nn.ReLU

    nn.ReLU

    No

    nn.MaxPool2D

    nn.MaxPool2d

    Yes. Difference

    nn.AdaptiveAvgPool2D

    nn.AdaptiveAvgPool2D

    No

    nn.Linear

    nn.Dense

    Yes. Difference

    torch.flatten

    nn.Flatten

    No

    By using MindSpore Dev Toolkit tool or checking PyTorch API Mapping, we find that four APIs are different.

  • Function analysis

    PyTorch Function

    MindSpore Function

    nn.init.kaiming_normal_

    initializer(init='HeNormal')

    nn.init.constant_

    initializer(init='Constant')

    nn.Sequential

    nn.SequentialCell

    nn.Module

    nn.Cell

    nn.distibuted

    set_auto_parallel_context

    torch.optim.SGD

    nn.optim.SGD or nn.optim.Momentum

(The interface design of MindSpore is different from that of PyTorch. Therefore, only the comparison of key functions is listed here.)

After API and function analysis, we find that there are no missing APIs and functions on MindSpore compared with PyTorch.

MindSpore Model Implementation

Datasets

The CIFAR-10 dataset is as follows:

└─dataset_path
    ├─cifar-10-batches-bin      # train dataset
        ├─ data_batch_1.bin
        ├─ data_batch_2.bin
        ├─ data_batch_3.bin
        ├─ data_batch_4.bin
        ├─ data_batch_5.bin
    └─cifar-10-verify-bin       # evaluate dataset
        ├─ test_batch.bin

This operation is implemented on PyTorch/MindSpore as follows:

PyTorch Dataset Processing MindSpore Dataset Processing
import torch
import torchvision.transforms as trans
import torchvision

train_transform = trans.Compose([
    trans.RandomCrop(32, padding=4),
    trans.RandomHorizontalFlip(0.5),
    trans.Resize(224),
    trans.ToTensor(),
    trans.Normalize([0.4914, 0.4822, 0.4465],
                    [0.2023, 0.1994, 0.2010]),
])

test_transform = trans.Compose([
    trans.Resize(224),
    trans.RandomHorizontalFlip(0.5),
    trans.ToTensor(),
    trans.Normalize([0.4914, 0.4822, 0.4465],
                    [0.2023, 0.1994, 0.2010]),
])
# If necessary, you can set download=True in the datasets.CIFAR10 interface to download automatically.
train_set = torchvision.datasets.CIFAR10(root='./data',
                                         train=True,
                                         transform=train_transform)
train_loader = torch.utils.data.DataLoader(train_set,
                                           batch_size=32,
                                           shuffle=True)
test_set = torchvision.datasets.CIFAR10(root='./data',
                                        train=False,
                                        transform=test_transform)
test_loader = torch.utils.data.DataLoader(test_set,
                                          batch_size=1,
                                          shuffle=False)
import mindspore as ms
import mindspore.dataset as ds
from mindspore.dataset import vision
from mindspore.dataset.transforms import TypeCast

def create_cifar_dataset(dataset_path, do_train, batch_size=32,
                         image_size=(224, 224),
                         rank_size=1, rank_id=0):
    dataset = ds.Cifar10Dataset(dataset_path,
                                shuffle=do_train,
                                num_shards=rank_size,
                                shard_id=rank_id)
    # define map operations
    trans = []
    if do_train:
        trans += [
            vision.RandomCrop((32, 32), (4, 4, 4, 4)),
            vision.RandomHorizontalFlip(prob=0.5)
        ]
    trans += [
        vision.Resize(image_size),
        vision.Rescale(1.0 / 255.0, 0.0),
        vision.Normalize([0.4914, 0.4822, 0.4465],
                         [0.2023, 0.1994, 0.2010]),
        vision.HWC2CHW()
    ]
    type_cast_op = TypeCast(ms.int32)
    data_set = dataset.map(operations=type_cast_op,
                           input_columns="label")
    data_set = data_set.map(operations=trans,
                            input_columns="image")
    # apply batch operations
    data_set = data_set.batch(batch_size,
                              drop_remainder=do_train)
    return data_set

Network Model Implementation

By referring to PyTorch ResNet, we have implemented MindSpore ResNet. The comparison tool shows that the implementation is different in the following aspects:

PyTorch MindSpore
nn.Conv2d(
    in_planes,
    out_planes,
    kernel_size=3,
    stride=stride,
    padding=dilation,
    groups=groups,
    bias=False,
    dilation=dilation,
)
nn.Conv2d(
    in_planes,
    out_planes,
    kernel_size=3,
    pad_mode="pad",
    stride=stride,
    padding=dilation,
    group=groups,
    has_bias=False,
    dilation=dilation,
)
nn.Module
nn.Cell
nn.ReLU(inplace=True)
nn.ReLU()
# PyTorch graph construction
forward
# MindSpore graph construction
construct
# PyTorch MaxPool2d with padding
maxpool = nn.MaxPool2d(kernel_size=3,
                       stride=2,
                       padding=1)

# MindSpore MaxPool2d with padding
maxpool = nn.SequentialCell([
              nn.Pad(paddings=((0, 0), (0, 0), (1, 1), (1, 1)),
                     mode="CONSTANT"),
              nn.MaxPool2d(kernel_size=3, stride=2)])
# PyTorch AdaptiveAvgPool2d

avgpool = nn.AdaptiveAvgPool2d((1, 1))
# When PyTorch AdaptiveAvgPool2d output shape is set to 1,
# MindSpore ReduceMean functions the same with higher speed.
mean = ops.ReduceMean(keep_dims=True)
# PyTorch Full Connection
fc = nn.Linear(512 * block.expansion, num_classes)
# MindSpore Full Connection
fc = nn.Dense(512 * block.expansion, num_classes)
# PyTorch Sequential
nn.Sequential
# MindSpore SequentialCell
nn.SequentialCell
# PyTorch Initialization
for m in self.modules():
    if isinstance(m, nn.Conv2d):
        nn.init.kaiming_normal_(
            m.weight,
            mode="fan_out",
            nonlinearity="relu")
    elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
        nn.init.constant_(
            m.weight,
            1)
        nn.init.constant_(
            m.bias,
            0)

# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros,
# and each residual block behaves like an identity.
# This improves the model by 0.2~0.3%.
# Reference: https://arxiv.org/abs/1706.02677

if zero_init_residual:
    for m in self.modules():
        is_bottleneck = isinstance(m, Bottleneck)
        is_basicblock = isinstance(m, BasicBlock)
        if is_bottleneck and m.bn3.weight is not None:
            # type: ignore[arg-type]
            nn.init.constant_(m.bn3.weight, 0)
        elif is_basicblock and m.bn2.weight is not None:
            # type: ignore[arg-type]
            nn.init.constant_(m.bn2.weight, 0)
# MindSpore Initialization
from mindspore import common.initializer

for _, cell in self.cells_and_names():
    if isinstance(cell, nn.Conv2d):
        cell.weight.set_data(initializer.initializer(
            initializer.HeNormal(negative_slope=0, mode='fan_out',
                                 nonlinearity='relu'),
            cell.weight.shape, cell.weight.dtype))
    elif isinstance(cell, (nn.BatchNorm2d, nn.GroupNorm)):
        cell.gamma.set_data(
            initializer.initializer("ones", cell.gamma.shape,
                                    cell.gamma.dtype))
        cell.beta.set_data(
            initializer.initializer("zeros", cell.beta.shape,
                                    cell.beta.dtype))
    elif isinstance(cell, (nn.Dense)):
        cell.weight.set_data(initializer.initializer(
            initializer.HeUniform(negative_slope=math.sqrt(5)),
            cell.weight.shape, cell.weight.dtype))
        cell.bias.set_data(
            initializer.initializer("zeros", cell.bias.shape,
                                    cell.bias.dtype))

if zero_init_residual:
    for _, cell in self.cells_and_names():
        is_bottleneck = isinstance(cell, Bottleneck)
        is_basicblock = isinstance(cell, BasicBlock)
        if is_bottleneck and cell.bn3.gamma is not None:
            cell.bn3.gamma.set_data("zeros", cell.bn3.gamma.shape,
                                    cell.bn3.gamma.dtype)
        elif is_basicblock and cell.bn2.weight is not None:
            cell.bn2.gamma.set_data("zeros", cell.bn2.gamma.shape,
                                    cell.bn2.gamma.dtype)

Loss Function

PyTorch MindSpore
net_loss = torch.nn.CrossEntropyLoss()
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')

Learning Rate and Optimizer

PyTorch MindSpore
net_opt = torch.optim.Adam(net.parameters(),
                           0.001,
                           weight_decay=1e-5)
optimizer = ms.nn.Adam(resnet.trainable_params(),
                    0.001,
                    weight_decay=1e-5)

Model Validation

The trained PyTorch parameters are obtained in Reproducing Reference Implementation. How do I convert the parameter file into a checkpoint file that can be used by MindSpore?

The following steps are required:

  1. Print the names and shapes of all parameters in the PyTorch parameter file and the names and shapes of all parameters in the MindSpore cell to which parameters need to be loaded.

  2. Compare the parameter name and shape to construct the parameter mapping.

  3. Create a parameter list based on the parameter mapping (PyTorch parameters -> numpy -> MindSpore parameters) and save the parameter list as a checkpoint.

  4. Unit test: Load PyTorch parameters and MindSpore parameters, construct random input, and compare the output.

Printing Parameters

PyTorch MindSpore
# Print the names and shapes of all parameters in the PyTorch cell
# Return the parameter dictionary
def pytorch_params(pth_file):
    par_dict = torch.load(pth_file, map_location='cpu')
    pt_params = {}
    for name in par_dict:
        parameter = par_dict[name]
        print(name, parameter.numpy().shape)
        pt_params[name] = parameter.numpy()
    return pt_params

pth_path = "resnet.pth"
pt_param = pytorch_params(pth_path)
print("="*20)

Result:

conv1.weight (64, 3, 7, 7)
bn1.weight (64,)
bn1.bias (64,)
bn1.running_mean (64,)
bn1.running_var (64,)
bn1.num_batches_tracked ()
layer1.0.conv1.weight (64, 64, 1, 1)
# Print the names and shapes of all parameters in the MindSpore cell
# Return the parameter dictionary
def mindspore_params(network):
    ms_params = {}
    for param in network.get_parameters():
        name = param.name
        value = param.data.asnumpy()
        print(name, value.shape)
        ms_params[name] = value
    return ms_params

from resnet_ms.src.resnet import resnet50 as ms_resnet50
ms_param = mindspore_params(ms_resnet50(num_classes=10))
print("="*20)

Result:

conv1.weight (64, 3, 7, 7)
bn1.moving_mean (64,)
bn1.moving_variance (64,)
bn1.gamma (64,)
bn1.beta (64,)
layer1.0.conv1.weight (64, 64, 1, 1)

Parameter Mapping and Checkpoint Saving

Except the BatchNorm parameter, the names and shapes of other parameters are correct. In this case, you can write a simple Python script for parameter mapping.

import mindspore as ms
def param_convert(ms_params, pt_params, ckpt_path):
    # Parameter name mapping dictionary
    bn_ms2pt = {"gamma": "weight",
                "beta": "bias",
                "moving_mean": "running_mean",
                "moving_variance": "running_var"}
    new_params_list = []
    for ms_param in ms_params.keys():
        # In the parameter list, only the parameters that contain bn and downsample.1 are the parameters of the BatchNorm operator.
        if "bn" in ms_param or "downsample.1" in ms_param:
            ms_param_item = ms_param.split(".")
            pt_param_item = ms_param_item[:-1] + [bn_ms2pt[ms_param_item[-1]]]
            pt_param = ".".join(pt_param_item)
            # If the corresponding parameter is found and the shape is the same, add the parameter to the parameter list.
            if pt_param in pt_params and pt_params[pt_param].shape == ms_params[ms_param].shape:
                ms_value = pt_params[pt_param]
                new_params_list.append({"name": ms_param, "data": ms.Tensor(ms_value)})
            else:
                print(ms_param, "not match in pt_params")
        # Other parameters
        else:
            # If the corresponding parameter is found and the shape is the same, add the parameter to the parameter list.
            if ms_param in pt_params and pt_params[ms_param].shape == ms_params[ms_param].shape:
                ms_value = pt_params[ms_param]
                new_params_list.append({"name": ms_param, "data": ms.Tensor(ms_value)})
            else:
                print(ms_param, "not match in pt_params")
    # Save as MindSpore checkpoint.
    ms.save_checkpoint(new_params_list, ckpt_path)

ckpt_path = "resnet50.ckpt"
param_convert(ms_params, pt_params, ckpt_path)

After the execution is complete, you can find the generated checkpoint file in ckpt_path.

If the parameter mapping is complex and it is difficult to find the mapping based on the parameter name, you can write a parameter mapping dictionary, for example:

param = {
    'bn1.bias': 'bn1.beta',
    'bn1.weight': 'bn1.gamma',
    'IN.weight': 'IN.gamma',
    'IN.bias': 'IN.beta',
    'BN.bias': 'BN.beta',
    'in.weight': 'in.gamma',
    'bn.weight': 'bn.gamma',
    'bn.bias': 'bn.beta',
    'bn2.weight': 'bn2.gamma',
    'bn2.bias': 'bn2.beta',
    'bn3.bias': 'bn3.beta',
    'bn3.weight': 'bn3.gamma',
    'BN.running_mean': 'BN.moving_mean',
    'BN.running_var': 'BN.moving_variance',
    'bn.running_mean': 'bn.moving_mean',
    'bn.running_var': 'bn.moving_variance',
    'bn1.running_mean': 'bn1.moving_mean',
    'bn1.running_var': 'bn1.moving_variance',
    'bn2.running_mean': 'bn2.moving_mean',
    'bn2.running_var': 'bn2.moving_variance',
    'bn3.running_mean': 'bn3.moving_mean',
    'bn3.running_var': 'bn3.moving_variance',
    'downsample.1.running_mean': 'downsample.1.moving_mean',
    'downsample.1.running_var': 'downsample.1.moving_variance',
    'downsample.0.weight': 'downsample.1.weight',
    'downsample.1.bias': 'downsample.1.beta',
    'downsample.1.weight': 'downsample.1.gamma'
}

Then, you can obtain the parameter file based on the param_convert process.

Unit Test

After obtaining the corresponding parameter file, you need to perform a unit test on the entire model to ensure model consistency.

import numpy as np
import torch
import mindspore as ms
from resnet_ms.src.resnet import resnet50 as ms_resnet50
from resnet_pytorch.resnet import resnet50 as pt_resnet50

def check_res(pth_path, ckpt_path):
    inp = np.random.uniform(-1, 1, (4, 3, 224, 224)).astype(np.float32)
    # When performing a unit test, you need to add a training or inference label to the cell.
    ms_resnet = ms_resnet50(num_classes=10).set_train(False)
    pt_resnet = pt_resnet50(num_classes=10).eval()
    pt_resnet.load_state_dict(torch.load(pth_path, map_location='cpu'))
    ms.load_checkpoint(ckpt_path, ms_resnet)
    print("========= pt_resnet conv1.weight ==========")
    print(pt_resnet.conv1.weight.detach().numpy().reshape((-1,))[:10])
    print("========= ms_resnet conv1.weight ==========")
    print(ms_resnet.conv1.weight.data.asnumpy().reshape((-1,))[:10])
    pt_res = pt_resnet(torch.from_numpy(inp))
    ms_res = ms_resnet(ms.Tensor(inp))
    print("========= pt_resnet res ==========")
    print(pt_res)
    print("========= ms_resnet res ==========")
    print(ms_res)
    print("diff", np.max(np.abs(pt_res.detach().numpy() - ms_res.asnumpy())))

pth_path = "resnet.pth"
ckpt_path = "resnet50.ckpt"
check_res(pth_path, ckpt_path)

During the unit test, you need to add training or inference labels to cells. PyTorch training uses .train() and inference uses .eval(), MindSpore training uses .set_train() and inference uses .set_train(False).

Result:

========= pt_resnet conv1.weight ==========
[ 1.091892e-40 -1.819391e-39  3.509566e-40 -8.281730e-40  1.207908e-39
 -3.576954e-41 -1.000796e-39  1.115791e-39 -1.077758e-39 -6.031427e-40]
========= ms_resnet conv1.weight ==========
[ 1.091892e-40 -1.819391e-39  3.509566e-40 -8.281730e-40  1.207908e-39
 -3.576954e-41 -1.000796e-39  1.115791e-39 -1.077758e-39 -6.031427e-40]
========= pt_resnet res ==========
tensor([[-15.1945,  -5.6529,   6.5738,   9.7807,  -2.4615,   3.0365,  -4.7216,
         -11.1005,   2.7121,  -9.3612],
        [-14.2412,  -5.9004,   5.6366,   9.7030,  -1.6322,   2.6926,  -3.7307,
         -10.7582,   1.4195,  -7.9930],
        [-13.4795,  -5.6582,   5.6432,   8.9152,  -1.5169,   2.6958,  -3.4469,
         -10.5300,   1.3318,  -8.1476],
        [-13.6448,  -5.4239,   5.8254,   9.3094,  -2.1969,   2.7042,  -4.1194,
         -10.4388,   1.9331,  -8.1746]], grad_fn=<AddmmBackward0>)
========= ms_resnet res ==========
[[-15.194535   -5.652934    6.5737996   9.780719   -2.4615316   3.0365033
   -4.7215843 -11.100524    2.7121294  -9.361177 ]
 [-14.24116    -5.9004383   5.6366115   9.702984   -1.6322318   2.69261
   -3.7307222 -10.758192    1.4194587  -7.992969 ]
 [-13.47945    -5.658216    5.6432185   8.915173   -1.5169426   2.6957715
   -3.446888  -10.529953    1.3317728  -8.147601 ]
 [-13.644804   -5.423854    5.825424    9.309403   -2.1969485   2.7042081
   -4.119426  -10.438771    1.9330862  -8.174606 ]]
diff 2.861023e-06

The final result is similar and basically meets the expectation. When the results are very different, you can fix the randomness of PyTorch and MindSpore after completing the parameter mapping, and then use the tool: TroubleShooter API level network results automatic comparison for comparing the network forward and reverse results to improve the localization efficiency.

Inference Process

PyTorch MindSpore
import torch
import torchvision.transforms as trans
import torchvision
import torch.nn.functional as F
from resnet import resnet50

def test_epoch(model, device, data_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in data_loader:
            output = model(data.to(device))
            # sum up batch loss
            test_loss += F.nll_loss(output, target.to(device),
                                    reduction='sum').item()
            # get the index of the max log-probability
            pred = output.max(1)
            pred = pred[1]
            correct += pred.eq(target.to(device)).sum().item()

    test_loss /= len(data_loader.dataset)
    print('\nLoss: {:.4f}, Accuracy: {:.0f}%\n'.format(
        test_loss, 100. * correct / len(data_loader.dataset)))

use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
test_transform = trans.Compose([
    trans.Resize(224),
    trans.RandomHorizontalFlip(0.5),
    trans.ToTensor(),
    trans.Normalize([0.4914, 0.4822, 0.4465],
                    [0.2023, 0.1994, 0.2010]),
])
test_set = torchvision.datasets.CIFAR10(
    root='./data', train=False, transform=test_transform)
test_loader = torch.utils.data.DataLoader(
    test_set, batch_size=1, shuffle=False)

# 2. define forward network
if use_cuda:
    net = resnet50(num_classes=10).cuda()
else:
    resnet50(num_classes=10)

net.load_state_dict(torch.load("./resnet.pth", map_location='cpu'))
test_epoch(net, device, test_loader)
import numpy as np
import mindspore as ms
from mindspore import nn
from src.dataset import create_dataset
from src.model_utils.moxing_adapter import moxing_wrapper
from src.model_utils.config import config
from src.utils import init_env
from src.resnet import resnet50

def test_epoch(model, data_loader, loss_func):
    model.set_train(False)
    test_loss = 0
    correct = 0
    for data, target in data_loader:
        output = model(data)
        test_loss += float(loss_func(output, target).asnumpy())
        pred = np.argmax(output.asnumpy(), axis=1)
        correct += (pred == target.asnumpy()).sum()
    dataset_size = data_loader.get_dataset_size()
    test_loss /= dataset_size
    print('\nLoss: {:.4f}, Accuracy: {:.0f}%\n'.format(
        test_loss, 100. * correct / dataset_size))

@moxing_wrapper()
def test_net():
    init_env(config)
    eval_dataset = create_dataset(
        config.dataset_name,
        config.data_path,
        False, batch_size=1,
        image_size=(int(config.image_height),
        int(config.image_width)))
    resnet = resnet50(num_classes=config.class_num)
    ms.load_checkpoint(config.checkpoint_path, resnet)
    loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True,
                                            reduction='mean')
    test_epoch(resnet, eval_dataset, loss)

if __name__ == '__main__':
    test_net()

Execute:
python test.py --data_path data/cifar10/ --checkpoint_path resnet.ckpt
Result:
Loss: -9.7075, Accuracy: 91%
Result:
run standalone!
Loss: 0.3240, Accuracy: 91%

The inference accuracy is the same.

When inference results are inconsistent, here the tool TroubleShooter compares MindSpore and PyTorch network outputs for consistency compares the inference results of PyTorch and MindSpore networks to locate where the network outputs start to be inconsistent, to improve the migration efficiency.

Training Process

For details about the PyTorch training process, see PyToch ResNet-50 CIFAR-10 Sample Code. The log file and trained path are stored in resnet_pytorch_res.

The corresponding MindSpore code is as follows:

import numpy as np
import mindspore as ms
from mindspore.train import Model
from mindspore import nn
from mindspore import Profiler
from src.dataset import create_dataset
from src.model_utils.moxing_adapter import moxing_wrapper
from src.model_utils.config import config
from src.utils import init_env
from src.resnet import resnet50


def train_epoch(epoch, model, loss_fn, optimizer, data_loader):
    model.set_train()
    # Define forward function
    def forward_fn(data, label):
        logits = model(data)
        loss = loss_fn(logits, label)
        return loss, logits

    # Get gradient function
    grad_fn = ms.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

    # Define function of one-step training
    def train_step(data, label):
        (loss, _), grads = grad_fn(data, label)
        optimizer(grads)
        return loss

    dataset_size = data_loader.get_dataset_size()
    for batch_idx, (data, target) in enumerate(data_loader):
        loss = float(train_step(data, target).asnumpy())
        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx, dataset_size,
                100. * batch_idx / dataset_size, loss))


def test_epoch(model, data_loader, loss_func):
    model.set_train(False)
    test_loss = 0
    correct = 0
    for data, target in data_loader:
        output = model(data)
        test_loss += float(loss_func(output, target).asnumpy())
        pred = np.argmax(output.asnumpy(), axis=1)
        correct += (pred == target.asnumpy()).sum()
    dataset_size = data_loader.get_dataset_size()
    test_loss /= dataset_size
    print('\nTest set: Average loss: {:.4f}, Accuracy: {:.0f}%\n'.format(
        test_loss, 100. * correct / dataset_size))


@moxing_wrapper()
def train_net():
    init_env(config)
    if config.enable_profiling:
        profiler = Profiler()
    train_dataset = create_dataset(config.dataset_name, config.data_path, True, batch_size=config.batch_size,
                                   image_size=(int(config.image_height), int(config.image_width)),
                                   rank_size=40, rank_id=config.rank_id)
    eval_dataset = create_dataset(config.dataset_name, config.data_path, False, batch_size=1,
                                  image_size=(int(config.image_height), int(config.image_width)))
    config.steps_per_epoch = train_dataset.get_dataset_size()
    resnet = resnet50(num_classes=config.class_num)
    optimizer = nn.Adam(resnet.trainable_params(), config.lr, weight_decay=config.weight_decay)
    loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
    for epoch in range(config.epoch_size):
        train_epoch(epoch, train_net, loss_fn, optimizer, train_dataset)
        test_epoch(resnet, eval_dataset, loss_fn)

    print('Finished Training')
    save_path = './resnet.ckpt'
    ms.save_checkpoint(resnet, save_path)


if __name__ == '__main__':
    train_net()