mindspore.train.ConfusionMatrix
- class mindspore.train.ConfusionMatrix(num_classes, normalize='no_norm', threshold=0.5)[source]
Computes the confusion matrix, which is commonly used to evaluate the performance of classification models, including binary classification and multiple classification.
If you only need confusion matrix, use this class. If you want to calculate other metrics, such as 'PPV', 'TPR', 'TNR', etc., use class
mindspore.train.ConfusionMatrixMetric
.- Parameters
num_classes (int) – Number of classes in the dataset.
normalize (str) –
Normalization mode for confusion matrix. Default:
"no_norm"
. Choose from:"no_norm"
: No Normalization is used. Default:None
."target"
: Normalization based on target value."prediction"
: Normalization based on predicted value."all"
: Normalization over the whole matrix.
threshold (float) – The threshold used to compare with the input tensor. Default:
0.5
.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import numpy as np >>> from mindspore import Tensor >>> from mindspore.train import ConfusionMatrix >>> >>> x = Tensor(np.array([1, 0, 1, 0])) >>> y = Tensor(np.array([1, 0, 0, 1])) >>> metric = ConfusionMatrix(num_classes=2, normalize='no_norm', threshold=0.5) >>> metric.clear() >>> metric.update(x, y) >>> output = metric.eval() >>> print(output) [[1. 1.] [1. 1.]]
- update(*inputs)[source]
Update state with y_pred and y.
- Parameters
inputs (tuple) – Input y_pred and y. y_pred and y are a Tensor, list or numpy.ndarray. y_pred is the predicted value, y is the true value. The shape of y_pred is \((N, C, ...)\) or \((N, ...)\). The shape of y is \((N, ...)\).
- Raises
ValueError – If the number of inputs is not 2.
ValueError – If the dim of y_pred and y are not equal.