mindspore.ops.unique_consecutive
- mindspore.ops.unique_consecutive(input, return_inverse=False, return_counts=False, dim=None)[source]
Remove consecutive duplicate elements in the input tensor, retaining only the first occurrence from each repeated group.
- Parameters
input (Tensor) – The input tensor.
return_inverse (bool, optional) – Whether to also return the indices for where elements in the original input ended up in the returned unique list. Default
False
.return_counts (bool, optional) – Whether to also return the counts for each unique element. Default
False
.dim (int, optional) – Specify the dimension for unique. Default
None
, the input tensor will be flattened.
- Returns
Tensor or tuple(output, inverse_indices, counts) of tensors.
output (Tensor) - The deduplicated output tensor.
inverse_indices (Tensor, optional) - The indices of the elements of the input tensor in the output .
counts (Tensor, optional) - The counts for each unique element.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> x = mindspore.tensor([1, 1, 2, 2, 3, 1, 1, 2], mindspore.int32) >>> output, inverse_indices, counts = mindspore.ops.unique_consecutive(x, True, True, None) >>> print(output) [1 2 3 1 2] >>> print(inverse_indices) [0 0 1 1 2 3 3 4] >>> print(counts) [2 2 1 2 1]