mindspore.ops.tensordump
- mindspore.ops.tensordump(file_name, tensor, mode='out')[source]
Save Tensor in numpy's npy format.
Warning
The parameter mode will no longer support the value 'all'.
In Parallel situation, tensordump will dump slice of data at each rank. In Ascend platform with graph mode, Your code OpA –> OpB may compiled as OpA –> RedistributionOps –> OpB.
Note: The redistribution operator is introduced, Due to inter-device communication and shard strategies in the static graph parallel scenario.
In case of OpA –> OpB, the dump data of OpA's output is equal to OpB's input.
But in case of OpA –> RedistributionOps –> OpB, The dump data of OpA's output is not equal to OpB's input (Due to the redistribution operators). So the parameter mode is to handle this situation.
Assuming OpA's output is used as both tensordump's input parameter and OpB's input parameter. Different requirements of saving dump data can be achieved by configuring parameter mode:
If the mode is 'out', the dump data contains only OpA's output slice.
If the mode is 'in', the dump data contains only OpB's input slice.
For mode 'in', the input slice npy file format is: fileName_dumpMode_dtype_id.npy.
For mode 'out', the output slice npy file format is: filename_dtype_id.npy.
fileName: Value of the parameter file_name (if parameter file_name is a user-specified path, the value of fileName is the last level of the path).
dumpMode: Value of the parameter mode.
dtype: The original data type. Data of type bfloat16 stored in the .npy file will be converted to float32.
id: An auto increment ID.
Note
In Ascend platform with graph mode, the environment variables MS_DUMP_SLICE_SIZE and MS_DUMP_WAIT_TIME can be set to solve operator execution failure when outputting big tensor or outputting tensor intensively.
The operator of tensordump doesn't support in control flow.
If current parallel mode is STAND_ALONE, mode should only be 'out'.
Parameter mode will be set to 'out' if user doesn't configure it.
This function is used for debugging.
- Parameters
- Raises
TypeError – If file_name is not str.
TypeError – If tensor is not Tensor.
TypeError – If mode is not str.
ValueError – If mode is not in one of ['in', 'out'].
- Supported Platforms:
Ascend
Examples
Note
Using msrun command to run below example: msrun –worker_num=2 –local_worker_num=2 –master_port=11450 –log_dir=msrun_log –join=True –cluster_time_out=300 tensordump_example.py
>>> import os >>> import numpy as np >>> import mindspore as ms >>> from mindspore import nn, Tensor, ops, context >>> from mindspore.ops import operations as P >>> from mindspore.communication import init, get_rank >>> init() >>> rank_id = get_rank() >>> dump_path = f'dumps/rank_{rank_id}/mul1_mul2.npy' >>> class Net(nn.Cell): ... def __init__(self, strategy1, strategy2): ... super(Net, self).__init__() ... self.matmul1 = P.MatMul().shard(strategy1) ... self.matmul2 = P.MatMul().shard(strategy2) ... ... def construct(self, x, y, b): ... out1 = self.matmul1(x, y) ... ops.tensordump(dump_path, out1, 'out') ... out2 = self.matmul2(out1, b) ... return out2 ... >>> ms.set_context(mode=ms.GRAPH_MODE) >>> os.environ["MS_DEV_SAVE_GRAPHS"] = "2" >>> context.set_auto_parallel_context(parallel_mode='semi_auto_parallel', full_batch=True) >>> strategy1 = ((1, 2), (2, 1)) >>> strategy2 = ((1, 2), (2, 1)) >>> net = Net(strategy1, strategy2) >>> x = Tensor(0.1 * np.random.randn(64, 64).astype(np.float32)) >>> y = Tensor(0.1 * np.random.randn(64, 64).astype(np.float32)) >>> b = Tensor(0.1 * np.random.randn(64, 64).astype(np.float32)) >>> out = net(x, y, b) >>> print(f"out shape is: {out.shape}") >>> matmul1_output_slice = np.load('mul1_mul2_float32_0.npy') # load matmul1's output slice