mindspore.ops.squeeze
- mindspore.ops.squeeze(input, axis=None)[source]
Return the Tensor after deleting the dimension of size 1 in the specified axis.
If \(axis=None\), it will remove all the dimensions of size 1. If axis is specified, it will remove the dimensions of size 1 in the given axis. For example, if the dimension is not specified \(axis=None\), input shape is (A, 1, B, C, 1, D), then the shape of the output Tensor is (A, B, C, D). If the dimension is specified, the squeeze operation is only performed in the specified dimension. If input shape is (A, 1, B), when \(axis=0\) or \(axis=2\), the input tensor is not changed, while when \(axis=1\), the input tensor shape is changed to (A, B).
Note
Please note that in dynamic graph mode, the output Tensor will share data with the input Tensor, and there is no Tensor data copy process.
The dimension index starts at 0 and must be in the range [-input.ndim, input.ndim].
In GE mode, only support remove dimensions of size 1 from the shape of input tensor.
Warning
This is an experimental API that is subject to change or deletion.
- Parameters
input (Tensor) – The shape of tensor is \((x_1, x_2, ..., x_R)\).
axis (Union[int, tuple(int), list(int)]) – Specifies the dimension indexes of shape to be removed, which will remove all the dimensions of size 1 in the given axis parameter. If specified, it must be int32 or int64. Default:
None
, an empty tuple will be used.
- Returns
Tensor, the shape of tensor is \((x_1, x_2, ..., x_S)\).
- Raises
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32) >>> output = ops.squeeze(input) >>> print(output) [[1. 1.] [1. 1.] [1. 1.]]