mindspore.ops.scatter_nd_min
- mindspore.ops.scatter_nd_min(input_x, indices, updates, use_locking=False)[source]
Perform a sparse minimum update on input_x based on the specified indices and update values.
Note
Support implicit type conversion and type promotion.
The dimension of indices is at least 2, and its shape must be indices.shape[-1] <= len(indices.shape).
The shape of updates is indices.shape[:-1] + input_x.shape[indices.shape[-1]:].
- Parameters
- Returns
Tensor
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> input_x = mindspore.Parameter(mindspore.tensor(np.ones(8) * 10, mindspore.float32), name="x") >>> indices = mindspore.tensor([[2], [4], [1], [7]], mindspore.int32) >>> updates = mindspore.tensor([6, 7, 8, 9], mindspore.float32) >>> output = mindspore.ops.scatter_nd_min(input_x, indices, updates, False) >>> print(output) [10. 8. 6. 10. 7. 10. 10. 9.] >>> input_x = mindspore.Parameter(mindspore.tensor(np.ones((4, 4, 4)) * 10, mindspore.int32)) >>> indices = mindspore.tensor([[0], [2]], mindspore.int32) >>> updates = mindspore.tensor([[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]], ... [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]], mindspore.int32) >>> output = mindspore.ops.scatter_nd_min(input_x, indices, updates, False) >>> print(output) [[[ 1 1 1 1] [ 2 2 2 2] [ 3 3 3 3] [ 4 4 4 4]] [[10 10 10 10] [10 10 10 10] [10 10 10 10] [10 10 10 10]] [[ 5 5 5 5] [ 6 6 6 6] [ 7 7 7 7] [ 8 8 8 8]] [[10 10 10 10] [10 10 10 10] [10 10 10 10] [10 10 10 10]]]