mindspore.ops.random_poisson
- mindspore.ops.random_poisson(shape, rate, seed=None, dtype=mstype.float32)[source]
Generate random number Tensor with shape according to a Poisson distribution with mean rate.
Warning
The Ascend backend does not support the reproducibility of random numbers, so the seed parameter has no effect.
- Parameters
shape (Tensor) – The shape of random tensor to be sampled from each poisson distribution, 1-D integer tensor.
rate (Tensor) – The
parameter the distribution is constructed with. It represents the mean of poisson distribution and also the variance of the distribution.seed (int, optional) – Random seed, must be non-negative. Default
None
.dtype (mindspore.dtype) – The data type returned. Default
mstype.float32
.
- Returns
Tensor, the shape is mindspore.ops.concat([shape, rate.shape], axis=0).
- Supported Platforms:
GPU
CPU
Examples
>>> import mindspore >>> # case 1: 1-D shape, 2-D rate, float64 output >>> shape = mindspore.tensor([2, 2], mindspore.int64) >>> rate = mindspore.tensor([[5.0, 10.0], [5.0, 1.0]], mindspore.float32) >>> output = mindspore.ops.random_poisson(shape, rate, seed=5, dtype=mindspore.float64) >>> print(output.shape, output.dtype) (2, 2, 2, 2) Float64 >>> # case 2: 1-D shape, scalar rate, int64 output >>> shape = mindspore.tensor([2, 2], mindspore.int64) >>> rate = mindspore.tensor(5.0, mindspore.float64) >>> output = mindspore.ops.random_poisson(shape, rate, seed=5, dtype=mindspore.int64) >>> print(output.shape, output.dtype) (2, 2) Int64