mindspore.ops.one_hot
- mindspore.ops.one_hot(indices, depth, on_value=1, off_value=0, axis=- 1)[source]
Generate a new tensor, where the positions specified by indices are assigned on_value, and all other positions are assigned off_value.
Note
If the input indices has rank N, the output will have rank N+1. The new axis is created at dimension axis. On Ascend, if on_value is int64 dtype, indices must be int64 dtype, and the value for on_value and off_value can only be 1 and 0.
- Parameters
indices (Tensor) – The input tensor of indices.
depth (int) – The depth of the one-hot.
on_value (Union[Tensor, int, float], optional) – The value used to fill indexed positions. Default
1
.off_value (Union[Tensor, int, float], optional) – The value used to fill non-indexed positions. Default
0
.axis (int, optional) – Specify the axis for computation. Default
-1
.
- Returns
Tensor
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> indices = mindspore.tensor([0, 1, 2, 4]) >>> mindspore.ops.one_hot(indices, depth=5) Tensor(shape=[4, 5], dtype=Int64, value= [[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 1]]) >>> >>> mindspore.ops.one_hot(indices, depth=3) Tensor(shape=[4, 3], dtype=Int64, value= [[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) >>> # If shape of indices is (N, C), and axis=-1, the returned shape will be (N, C, depth). >>> indices = mindspore.tensor([[0, 2], [1, -1]]) >>> mindspore.ops.one_hot(indices, depth=3, on_value=10, off_value=4, axis=-1) Tensor(shape=[2, 2, 3], dtype=Int64, value= [[[10, 4, 4], [ 4, 4, 10]], [[ 4, 10, 4], [ 4, 4, 4]]]) >>> # If axis=0, the returned shape will be (depth, N, C). >>> mindspore.ops.one_hot(indices, depth=3, on_value=10, off_value=4, axis=0) Tensor(shape=[3, 2, 2], dtype=Int64, value= [[[10, 4], [ 4, 4]], [[ 4, 4], [10, 4]], [[ 4, 10], [ 4, 4]]])