mindspore.ops.isclose
- mindspore.ops.isclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False)[source]
Return a boolean tensor where two tensors are element-wise equal within a tolerance. Math function is defined as:
Two Infinite values are considered equal if they have the same sign, Two NaN values are considered equal if equal_nan is
True
.- Parameters
input (Tensor) – The first input tensor.
other (Tensor) – The second input tensor.
rtol (Union[float, int, bool], optional) – Relative tolerance. Default
1e-05
.atol (Union[float, int, bool], optional) – Absolute tolerance. Default
1e-08
.equal_nan (bool, optional) – Whether two NaNs are considered equal. Default
False
.
- Returns
Tensor
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> mindspore.ops.isclose(mindspore.tensor([2e6, float("inf"), float("-inf"), float("inf"), float("nan")]), ... mindspore.tensor([2e7, float("inf"), float("-inf"), float("-inf"), float("nan")])) Tensor(shape=[6], dtype=Bool, value= [ True, False, True, True, False, False]) >>> >>> mindspore.ops.isclose(mindspore.tensor([1e6, 2e6, 3e6]), ... mindspore.tensor([1.00008e6, 2.00008e7, 3.00008e8]), rtol=1e3) Tensor(shape=[3], dtype=Bool, value= [ True, True, True]) >>> >>> mindspore.ops.isclose(mindspore.tensor([1e6, 2e6, 3e6]), ... mindspore.tensor([1.00001e6, 2.00002e6, 3.00009e6]), atol=1e3) Tensor(shape=[3], dtype=Bool, value= [ True, True, True]) >>> mindspore.ops.isclose(mindspore.tensor([float("nan"), 1, 2]), ... mindspore.tensor([float("nan"), 1, 2]), equal_nan=True) Tensor(shape=[3], dtype=Bool, value= [ True, True, True])