mindspore.ops.gamma
- mindspore.ops.gamma(shape, alpha, beta, seed=None)[source]
Generates random numbers according to the Gamma random number distribution.
Support broadcasting.
Warning
The Ascend backend does not support the reproducibility of random numbers, so the seed parameter has no effect.
- Parameters
- Returns
Tensor
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> # case 1: alpha_shape is (2, 2) >>> shape = (3, 1, 2) >>> alpha = mindspore.tensor([[3, 4], [5, 6]], mindspore.float32) >>> beta = mindspore.tensor([1.0], mindspore.float32) >>> output = mindspore.ops.gamma(shape, alpha, beta, seed=5) >>> result = output.shape >>> print(result) (3, 2, 2) >>> # case 2: alpha_shape is (2, 3), so shape is (3, 1, 3) >>> shape = (3, 1, 3) >>> alpha = mindspore.tensor([[1, 3, 4], [2, 5, 6]]), mindspore.float32) >>> beta = mindspore.tensor([1.0], mindspore.float32) >>> output = mindspore.ops.gamma(shape, alpha, beta, seed=5) >>> result = output.shape >>> print(result) (3, 2, 3) >>> # case 3: beta_shape is (1, 2), the output is different. >>> shape = (3, 1, 2) >>> alpha = mindspore.tensor([[3, 4], [5, 6]], mindspore.float32) >>> beta = mindspore.tensor([1.0, 2], mindspore.float32) >>> output = mindspore.ops.gamma(shape, alpha, beta, seed=5) >>> print(output) [[[ 2.2132034 5.8855834] [ 3.8825176 8.6066265]] [[ 3.3981476 7.5805717] [ 3.7190282 19.941492 ]] [[ 2.9512358 2.5969937] [ 3.786061 5.160872 ]]] >>> # case 4: beta_shape is (2, 1), the output is different. >>> shape = (3, 1, 2) >>> alpha = mindspore.tensor([[3, 4], [5, 6]], mindspore.float32) >>> beta = mindspore.tensor([[1.0], [2.0]], mindspore.float32) >>> output = mindspore.ops.gamma(shape, alpha, beta, seed=5) >>> print(output) [[[ 5.6085486 7.8280783] [ 15.97684 16.116285]] [[ 1.8347423 1.713663] [ 3.2434065 15.667398]] [[ 4.2922077 7.3365674] [ 5.3876944 13.159832 ]]]