mindspore.ops.cosine_embedding_loss
- mindspore.ops.cosine_embedding_loss(input1, input2, target, margin=0.0, reduction='mean')[source]
CosineEmbeddingLoss creates a criterion to measure the similarity between two tensors using cosine distance.
Given two tensors
, , and a Tensor label with values 1 or -1:- Parameters
input1 (Tensor) – Tensor of shape
where means, any number of additional dimensions.input2 (Tensor) – Tensor of shape
, same shape and dtype as input1.target (Tensor) – Contains value 1 or -1. Suppose the shape of input1 is
, then the shape of target must be .margin (float, optional) – Should be in [-1.0, 1.0]. Default:
0.0
.reduction (str, optional) –
Apply specific reduction method to the output:
'none'
,'mean'
,'sum'
. Default:'mean'
.'none'
: no reduction will be applied.'mean'
: compute and return the mean of elements in the output.'sum'
: the output elements will be summed.
- Returns
Tensor or Scalar, if reduction is
"none"
, its shape is the same as target. Otherwise, a scalar value will be returned.- Raises
TypeError – If margin is not a float.
ValueError – If reduction is not one of
'none'
,'mean'
,'sum'
.ValueError – If margin is not in range [-1.0, 1.0].
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> intput1 = Tensor(np.array([[0.3, 0.8], [0.4, 0.3]]), mindspore.float32) >>> intput2 = Tensor(np.array([[0.4, 1.2], [-0.4, -0.9]]), mindspore.float32) >>> target = Tensor(np.array([1, -1]), mindspore.int32) >>> output = ops.cosine_embedding_loss(intput1, intput2, target) >>> print(output) 0.0003425479